Insect diversity across an afro-tropical forest biodiversity hotspot
Tropical forests host a remarkable proportion of global arthropod diversity. Yet, arthropod communities living in tropical forests are still poorly studied, particularly for dry forests of Eastern Africa. The aim of this study was to analyse community structures, species richness and relative abunda...
Saved in:
Published in: | Journal of insect conservation Vol. 25; no. 2; pp. 221 - 228 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-04-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tropical forests host a remarkable proportion of global arthropod diversity. Yet, arthropod communities living in tropical forests are still poorly studied, particularly for dry forests of Eastern Africa. The aim of this study was to analyse community structures, species richness and relative abundances of insects across a heterogeneous forest consisting of various forest types. We collected insects in the lower canopies with light traps across the Arabuko Sokoke forest, part of the East African coastal forest biodiversity hotspot in southeast Kenya. Sampling was conducted across three forest types and along the forest edge. In total we collected > 250,000 individuals. We grouped these individuals into orders, and beetles into (sub)families. Representatives of the taxonomically well-known beetle families Cerambycidae, Tenebrionidae and Scolytinae were further determined to species level. We subsequently classified these groups into guilds according to their ecological requirements and life-histories. Relative abundances of arthropods strongly differed among taxonomic groups and forest types. Evenness was highest in the heterogeneous natural
Brachystegia
forest type. The mixed forest type and the forest edges showed intermediate degrees of evenness, while the structurally homogenous
Cynometra
forest showed comparatively low degrees of evenness.
Implications for insect conservation
We found that taxonomic and guild compositions strongly differed among the forest types. Our findings reveal that structural heterogeneity of a forest is the major driver of insect diversity, community composition, and relative abundance. Our study underlines that the preservation of all three forest types is crucial to maintain the complete diversity of arthropods across all taxonomic groups. |
---|---|
ISSN: | 1366-638X 1572-9753 |
DOI: | 10.1007/s10841-021-00293-z |