Multiphase Flow Simulation of ITTC Standard Cavitator for Underwater Radiated Noise Prediction

This work focuses on the main issues related to noise measurements in cavitation tunnels. The scope of the paper is to twofold: to obtain a better understanding on the main phenomena underlying experiments and to define consistent cavitation tunnel measurement corrections for background noise, wall...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering Vol. 11; no. 4; p. 820
Main Authors: Hynninen, Antti, Viitanen, Ville, Tanttari, Jukka, Klose, Rhena, Testa, Claudio, Martio, Jussi
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-04-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work focuses on the main issues related to noise measurements in cavitation tunnels. The scope of the paper is to twofold: to obtain a better understanding on the main phenomena underlying experiments and to define consistent cavitation tunnel measurement corrections for background noise, wall reflections, and distance normalisation. To this aim, the acoustic field generated by the ITTC standard cavitator model inside a cavitation tunnel is predicted by Lighthill’s acoustic analogy and solved through a finite element method that inherently accounts for the presence of the walls. Sources of sound detection relies on two multiphase CFD solvers, namely, the homogeneous mixture model—Volume of Fluid method and the Euler–Euler formulations. Starting from the computation of the sound pressure level in the free field with the assumption of spherical spreading without absorption, corrections from losses and spreading are detected by the above approach. Background-corrected sound pressure levels are identified and then compared with the source levels measured in the cavitation tunnel of the Potsdam Model Basin (SVA). It is found that free-field computations corrected by tunnel-induced effects match well with experiments up to 100 Hz (in the one-third octave band), whereas relevant discrepancies arise out of this range that need further investigations.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse11040820