Mechanisms of molecular interactions in polybase-polyacid complex formed by copolymers of N,N-dimethylaminoethylmethacrylate with alkylmethacrylates and methacrylic acid with ethylacrylate
Mechanisms of molecular interaction in the blends of a polybase, a copolymer of N,N‐dimethylaminoethylmethacrylate with methylmethacrylate and butylmethacrylate (PDMAEMA–MMA/BMA), with a polyacid, a copolymer of methacrylic acid with ethylacrylate (PMAA‐co‐EA), and plasticizer, triethylcitrate (TEC)...
Saved in:
Published in: | Journal of applied polymer science Vol. 112; no. 3; pp. 1142 - 1165 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
05-05-2009
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mechanisms of molecular interaction in the blends of a polybase, a copolymer of N,N‐dimethylaminoethylmethacrylate with methylmethacrylate and butylmethacrylate (PDMAEMA–MMA/BMA), with a polyacid, a copolymer of methacrylic acid with ethylacrylate (PMAA‐co‐EA), and plasticizer, triethylcitrate (TEC), have been investigated with FTIR Spectroscopy and potentiometry. To evaluate the strengths of hydrogen and ionic bonds in the polyelectrolyte complexes, quantum‐chemical calculations were performed. According to this analysis, the energy of ionic and hydrogen bonding diminishes in the order: multi‐component complexes involving protonated aminogroup of DMAEMA (ammonium cation) in the presence of chlorine counterion with ionized or unchanged carboxyl groups and water molecules (690–520 kJ/mol) > ternary H‐bonded acid‐base complexes associated with molecule of water (520–420 kJ/mol) > binary ionic complex of carboxylate anion and ammonium cation (404 kJ/mol) > H‐bonded complex of carboxylate and ammonium ions (257 kJ/mol) > binary H‐bonded complex of uncharged carboxyl group with ammonium cation (114 kJ/mol) > ternary H‐bonded complex of uncharged carboxyl group, aminogroup and water molecule (43 kJ/mol) > binary H‐bonded complex between nonionized carboxyl and amino groups (26 kJ/mol). Proton‐donating capability of functional groups in the studied polyelectrolyte blends diminishes in the order: HN+(CH3)2 − > HOOC > HO. The proton‐donating capacity can be significantly improved in the presence of Cl− ions, the effect of which may be appreciably inhibited if Na+ cations are available in the blend or solution. Proton‐accepting capability weakens in the order: uncharged aminogroup > carboxylate anion > uncharged carboxyl group > hydroxyl group. The results of quantum chemical calculations facilitate interpretation of FTIR spectra. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 |
---|---|
Bibliography: | U.S. Civilian Research and Development Foundation ArticleID:APP29514 ark:/67375/WNG-XLT2V0B6-C TIPS-Corium cooperation - No. RUC1-1658-MO-06 istex:ADC23AD3A9B1343159ECEC8EDE9885C6010DB153 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.29514 |