Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: Effect of growth temperature

In the present work, the hydrothermal approach is employed to develop 1D-TiO2 nanorod array memristive devices and the effect of hydrothermal growth temperature on TiO2 memristive devices is studied. X-ray diffraction (XRD) analysis suggested that the rutile phase is dominant in the developed TiO2 n...

Full description

Saved in:
Bibliographic Details
Published in:Materials & design Vol. 151; pp. 37 - 47
Main Authors: Khot, A.C., Desai, N.D., Khot, K.V., Salunkhe, M.M., Chougule, M.A., Bhave, T.M., Kamat, R.K., Musselman, K.P., Dongale, T.D.
Format: Journal Article
Language:English
Published: Elsevier Ltd 05-08-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present work, the hydrothermal approach is employed to develop 1D-TiO2 nanorod array memristive devices and the effect of hydrothermal growth temperature on TiO2 memristive devices is studied. X-ray diffraction (XRD) analysis suggested that the rutile phase is dominant in the developed TiO2 nanorod array. Field emission scanning electron microscopy (FESEM) images show well adherent and pinhole free one dimensional (1D) TiO2 nanorods. The presence of titanium and oxygen in all the samples was confirmed by energy dispersive X-ray spectroscopy (EDS). Furthermore, growth of the 1D TiO2 nanorods depends on the growth temperature and uniform growth is observed at the higher growth temperatures. The well-known memristive hysteresis loop is observed in the TiO2 nanorod thin films. Furthermore, resistive switching voltages, the shape of I-V loops and (non)rectifying behavior changed as the growth temperature varied from 140 °C to 170 °C. The biological synapse properties such as paired-pulse facilitation and short-term depression are observed in some devices. The detailed electrical characterizations suggested that the developed devices show doubled valued charge-magnetic flux characteristic and charge transportation is due to the Ohmic and space charge limited current. [Display omitted] •Developed well adherent and pinhole free 1D Rutile-TiO2 nanorod array•Studied the growth temperature dependent bipolar resistive switching and memristive properties•Resistive switching voltages, the shape of I-V loops and (non)rectifying behavior depend upon the growth temperature•Paired-pulse facilitation and short-term depression like characteristics are observed•Non-ideal doubled valued charge-magnetic flux characteristic is observed•Conduction mechanism is due to Ohmic and space charge limited current
ISSN:0264-1275
1873-4197
DOI:10.1016/j.matdes.2018.04.046