Short-term effect of reclaimed wastewater quality gradient on soil microbiome during irrigation

To investigate the effect of wastewater (WW) treatment on soil bacterial communities, water of different quality was used to irrigate eight lettuces per tank: raw municipal wastewater (RWW), WW treated with an aerated constructed wetland (CWW) and WW treated with a membrane bioreactor (MBW), and tap...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment Vol. 901; p. 166028
Main Authors: Moulia, V, Ait-Mouheb, N, Lesage, G, Hamelin, J, Wéry, N, Bru-Adan, V, Kechichian, L, Heran, M
Format: Journal Article
Language:English
Published: Netherlands Elsevier 25-11-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the effect of wastewater (WW) treatment on soil bacterial communities, water of different quality was used to irrigate eight lettuces per tank: raw municipal wastewater (RWW), WW treated with an aerated constructed wetland (CWW) and WW treated with a membrane bioreactor (MBW), and tap water (TW). The physicochemical and microbiological characteristics (quality indicators) of these water types were characterized, and the water and soil bacterial communities were monitored by quantitative PCR (qPCR) and 16S rRNA gene sequencing. Despite marked differences in microbial load and diversity of waters, soil communities remained remarkably stable after irrigation. Microbial biomass was increased only in soils irrigated with RWW. At the end of the irrigation period (day 84), soil and water shared a large fraction of their bacterial communities, from 43 % to 70 %, depending on the water quality, indicating a transfer of bacterial communities from water to soil. Overall, the relative abundance of Proteobacteria and Acidobacteria was increased and that of Actinobacteria was decreased in soils irrigated with MBW, CWW and even more with RWW. Multivariate ordination clearly separated soils in three groups: soils irrigated with the cleanest water (TW), with treated WW (MBW and CWW), and with untreated WW (RWW). Nitrifying, denitrifying, and nitrogen-fixing bacteria were quantified by qPCR targeting amoA, narG, and nifH, respectively. Nitrifying bacteria were the most affected by the water quality, as indicated by amoA copy number increase in RWW-irrigated soil and decrease in CWW-irrigated soil. Overall, the abundance of all three genes was positively influenced by RWW treatment. In conclusion, the 84 days of irrigation influenced the soil microbial communities, and the impact depended on the quality of the used water.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.166028