Direct monitoring of bias-dependent variations in the exciton formation ratio of working organic light emitting diodes
In typical operation of organic light emitting diodes (OLEDs), excitons are assumed to generate with a ratio of 1:3 for singlet and triplet excitons, respectively, based on a simple spin statistics model. This assumption has been used in designing efficient OLEDs. Despite the larger generation ratio...
Saved in:
Published in: | Scientific reports Vol. 5; no. 1; p. 15533 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
21-10-2015
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In typical operation of organic light emitting diodes (OLEDs), excitons are assumed to generate with a ratio of 1:3 for singlet and triplet excitons, respectively, based on a simple spin statistics model. This assumption has been used in designing efficient OLEDs. Despite the larger generation ratio of triplet excitons, physical properties of fluorescent OLEDs are usually evaluated only through the electroluminescence (EL) intensity from singlets and the behaviors of triplets during the LED operation are virtually black-boxed, because the triplets are mostly non-emissive. Here, we employ transient spectroscopy combined with LED-operation for directly monitoring the non-emissive triplets of working OLEDs. The spectroscopic techniques are performed simultaneously with EL- and current measurements under various operation biases. The simultaneous measurements reveal that the relative formation ratio of singlet-to-triplet excitons dramatically changes with the magnitude of bias. The measurements also show that the generation efficiency of singlets scales with the bias, whereas that of triplets is nearly bias-independent. These features of the formation ratio and efficiency are compatibly explained by considering the yield of intersystem crossing and the energy separation of excitons from electron-hole pairs. The obtained findings via the spectroscopic measurements enable prediction of the formation pathways in OLEDs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep15533 |