The effects of antibodies to heat shock protein 70 in fertilization and embryo development

The role of heat shock proteins in shielding organisms from environmental stress is illustrated by the large-scale synthesis of these proteins by the organisms studied to date. However, recent evidence also suggests an important role for heat shock proteins in fertilization and early development of...

Full description

Saved in:
Bibliographic Details
Published in:Molecular human reproduction Vol. 7; no. 9; pp. 829 - 837
Main Authors: Matwee, Christie, Kamaruddin, Musaddin, Betts, Dean H., Basrur, P.K., King, W.Allan
Format: Journal Article
Language:English
Published: Oxford Oxford University Press 01-09-2001
Oxford Publishing Limited (England)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of heat shock proteins in shielding organisms from environmental stress is illustrated by the large-scale synthesis of these proteins by the organisms studied to date. However, recent evidence also suggests an important role for heat shock proteins in fertilization and early development of mammalian embryos. We found that the presence of anti-HSP70 antibody significantly reduced tight binding of spermatozoa to the zona pellucida of bovine oocytes and interrupted completion of meiosis II and pronuclear formation. Furthermore, the presence of anti-HSP70 in culture medium from day 3 to day 9 of development increased apoptosis and significantly reduced the number of embryos reaching the blastocyst stage. We further observed that the proportion of apoptotic cells in bovine blastocysts was significantly lower after in-vitro culture with a prior exposure to increased temperature. However, nuclear localization of the p53 protein, which is thought to be essential for the up-regulation of genes involved in apoptosis and cell cycle arrest, was detected in the majority of nuclei in blastocysts exposed to increased temperature, whereas in their untreated (control) counterparts, p53 protein was only detected in the cytoplasm. The decrease in apoptosis after exposure of blastocysts to increased temperature may be attributed to cell cycle arrest resulting from nuclear localization of the p53 protein and/or to an increase in heat shock protein synthesis. We propose that HSP70 plays a critical role in fertilization and early embryonic development.
Bibliography:local:0070829
PII:1460-2407
istex:C577763E24B80BD88FAA3FAAC84C7FBE04E6AFA0
ark:/67375/HXZ-DBZD6NGJ-T
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1360-9947
1460-2407
1460-2407
DOI:10.1093/molehr/7.9.829