Design and in vitro characterization of buccoadhesive tablets of timolol maleate
Abstract Objective: The purpose of this work was to develop and evaluate buccoadhesive tablets of timolol maleate (TM) due to its potential to circumvent the first-pass metabolism and to improve its bioavailability. Methods: The tablets were prepared by direct compression using two release modifying...
Saved in:
Published in: | Drug development and industrial pharmacy Vol. 40; no. 5; pp. 680 - 690 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Informa Healthcare USA, Inc
01-05-2014
Taylor & Francis |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Objective: The purpose of this work was to develop and evaluate buccoadhesive tablets of timolol maleate (TM) due to its potential to circumvent the first-pass metabolism and to improve its bioavailability.
Methods: The tablets were prepared by direct compression using two release modifying polymers, Carbopol 974P (Cp-974p) and sodium alginate (SA). A 32 full factorial design was employed to study the effect of independent variables, Cp-974p and SA, in various proportions in percent w/w, which influences the in vitro drug release and bioadhesive strengths. Physicochemical properties of the drug were evaluated by ultraviolet, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffraction (P-XRD). Tablets were evaluated for hardness, thickness, weight variation, drug content, surface pH, swelling index, bioadhesive force and in vitro drug release.
Results: The FTIR and DSC studies showed no evidence of interactions between drug, polymers and excipients. The P-XRD study revealed that crystallinity of TM remain unchanged in optimized formulation tablet. Formulation F9 achieves an in vitro drug release of 98.967% ± 0.28 at 8 h and a bioadhesive force of 0.088 N ± 0.01211.
Conclusion: We successfully developed buccal tablet formulations of TM and describe a non-Fickian-type anomalous transport as the release mechanism. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0363-9045 1520-5762 |
DOI: | 10.3109/03639045.2014.892955 |