Optimizing adipose-derived stromal vascular fraction storage: Temperature and time impact on cell viability in regenerative medicine

The adipose-derived stromal vascular fraction (SVF) plays a crucial role in regenerative medicine owing to its regenerative and immunomodulatory properties. However, the effective utilization of SVF in therapeutic applications requires careful consideration of storage conditions to maintain cell via...

Full description

Saved in:
Bibliographic Details
Published in:Medicine (Baltimore) Vol. 103; no. 38; p. e39859
Main Authors: Jović, Darko, Preradović, Ljubiša, Jović, Filip, Kremenović, Mićo, Lukić, Darko, Antonić, Milica, Unčanin, Nikola, Jović, Matija
Format: Journal Article
Language:English
Published: United States Lippincott Williams & Wilkins 20-09-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adipose-derived stromal vascular fraction (SVF) plays a crucial role in regenerative medicine owing to its regenerative and immunomodulatory properties. However, the effective utilization of SVF in therapeutic applications requires careful consideration of storage conditions to maintain cell viability. We conducted a research on 43 patients of different ages and sexes who were older than 18 years. This study explored the impact of different temperatures (-80, -20, and 4 °C) on SVF storage in platelet-poor plasma for 1 and 6 months. SVF extracted using a semi-UNISTATION™ system was subjected to rigorous analysis of cell count and viability using a LUNA-STEM™ Dual Fluorescence Cell Counter. The results indicated a significant correlation between the storage conditions and SVF viability. Notably, storing SVF at 4 °C demonstrated the highest cell viability and count, while -80 °C storage exhibited the least favorable outcomes. This study emphasizes the importance of minimizing storage time to preserve SVF viability, as evidenced by a decline in both cell count and viability over a 6-month period. Comparisons with the existing literature underscore the need for precise protocols for SVF storage, with considerations for temperature and cryoprotective agents. These findings provide valuable insights for developing optimal SVF storage protocols to enhance therapeutic outcomes and reduce the need for repeated adipose tissue harvesting. Despite the limitations of the study, such as the use of a cell counter instead of flow cytometry, the results establish the foundation for further research on refining SVF storage methods. The ideal storage temperature is from 4 °C, while the length of storage time inversely affects the viability of SVF; the longer the storage time, the lower the number and the viability of SVF cells, regardless of the temperature at which they are preserved.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0025-7974
1536-5964
1536-5964
DOI:10.1097/MD.0000000000039859