Long-Term Arsenic Sequestration in Biogenic Pyrite from Contaminated Groundwater: Insights from Field and Laboratory Studies

Pumping groundwater from arsenic (As)-contaminated aquifers exposes millions of people, especially those in developing countries, to high doses of the toxic contaminant. Previous studies have investigated cost-effective techniques to remove groundwater arsenic by stimulating sulfate-reducing bacteri...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) Vol. 11; no. 5; p. 537
Main Authors: Alicia Fischer, James Saunders, Sara Speetjens, Justin Marks, Jim Redwine, Stephanie R. Rogers, Ann S. Ojeda, Md Mahfujur Rahman, Zeki M. Billor, Ming-Kuo Lee
Format: Journal Article
Language:English
Published: MDPI AG 01-05-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pumping groundwater from arsenic (As)-contaminated aquifers exposes millions of people, especially those in developing countries, to high doses of the toxic contaminant. Previous studies have investigated cost-effective techniques to remove groundwater arsenic by stimulating sulfate-reducing bacteria (SRB) to form biogenic arsenian pyrite. This study intends to improve upon these past methods to demonstrate the effectiveness of SRB arsenic remediation at an industrial site in Florida. This study developed a ferrous sulfate and molasses mixture to sequester groundwater arsenic in arsenian pyrite over nine months. The optimal dosage of the remediating mixture consisted of 5 kg of ferrous sulfate, ~27 kg (60 lbs) of molasses, and ~1 kg (2 lbs) of fertilizer per 3785.4 L (1000 gallons) of water. The remediating mixture was injected into 11 wells hydrologically upgradient of the arsenic plume in an attempt to obtain full-scale remediation. Groundwater samples and precipitated biominerals were collected from June 2018 to March 2019. X-ray diffraction (XRD), X-ray fluorescence (XRF), electron microprobe (EMP), and scanning electron microscope (SEM) analyses determined that As has been sequestered mainly in the form of arsenian pyrite, which rapidly precipitated as euhedral crystals and spherical aggregates (framboids) 1–30 μm in diameter within two weeks of the injection. The analyses confirmed that the remediating mixture and injection scheme reduced As concentrations to near or below the site’s clean-up standard of 0.05 mg/L over the nine months. Moreover, the arsenian pyrite contained 0.03–0.89 weight percentage (wt%) of sequestered arsenic, with >80% of groundwater arsenic removed by SRB biomineralization. Considering these promising findings, the study is close to optimizing an affordable procedure for sequestrating dissolved As in industry settings.
ISSN:2075-163X
DOI:10.3390/min11050537