Seed Size and Germination Response: A Relationship for Fire-following Plant Species Exposed to Thermal Shock

Thermal shock is well known to be an important stimulus for the germination of soil-stored seeds in fire-prone plant communities. Nevertheless, while the overall germination response of different species is known to vary, the interaction between seed size and germination to a range of thermal-shock...

Full description

Saved in:
Bibliographic Details
Published in:Oecologia Vol. 134; no. 1; pp. 18 - 22
Main Authors: Hanley, M. E., J. E. Unna, Darvill, B.
Format: Journal Article
Language:English
Published: Berlin Springer-Verlag 01-01-2003
Springer
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermal shock is well known to be an important stimulus for the germination of soil-stored seeds in fire-prone plant communities. Nevertheless, while the overall germination response of different species is known to vary, the interaction between seed size and germination to a range of thermal-shock temperatures is poorly understood. This interaction may be important in regulating post-fire plant community establishment, since larger seeds are able to emerge from deeper within the soil profile than smaller seeds, and are therefore likely to be insulated against high above-ground temperatures by a deeper soil covering. In this experiment we examined how germination of eight co-occurring Western Australian fire-followers was influenced by thermal shock, and whether germination was significantly correlated with seed size. We found that small-seeded species not only showed enhanced germination at higher temperatures, but that their ability to germinate at higher temperatures was also greater than that displayed by larger-seeded species. These findings suggest that while seed size may be a useful general predictor of post-fire recruitment success, under different fire regimes the interaction between seed size, maximum seedling emergence depth, and the ability to withstand different thermal-shock temperatures is complex and may confound recent predictive models.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0029-8549
1432-1939
DOI:10.1007/s00442-002-1094-2