Complete Biosynthetic Pathway of the Phosphonate Phosphonothrixin: Two Distinct Thiamine Diphosphate-Dependent Enzymes Divide the Work to Form a C–C Bond
Phosphonates often exhibit biological activities by mimicking the phosphates and carboxylates of biological molecules. The phosphonate phosphonothrixin (PTX), produced by the soil-dwelling bacterium Saccharothrix sp. ST-888, exhibits herbicidal activity. In this study, we propose a complete biosynth...
Saved in:
Published in: | Journal of the American Chemical Society Vol. 144; no. 37; pp. 16715 - 16719 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
21-09-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phosphonates often exhibit biological activities by mimicking the phosphates and carboxylates of biological molecules. The phosphonate phosphonothrixin (PTX), produced by the soil-dwelling bacterium Saccharothrix sp. ST-888, exhibits herbicidal activity. In this study, we propose a complete biosynthetic pathway for PTX by reconstituting its biosynthesis in vitro. Our intensive analysis demonstrated that two dehydrogenases together reduce phosphonopyruvate (PnPy) to 2-hydroxy-3-phosphonopropanoic acid (HPPA) to accelerate the thermodynamically unfavorable rearrangement of phosphoenolpyruvate (PEP) to PnPy. The next four enzymes convert HPPA to (3-hydroxy-2-oxopropyl)phosphonic acid (HOPA). In the final stage of PTX biosynthesis, the “split-gene” transketolase homologue, PtxB5/6, catalyzes the transfer of a two-carbon unit attached to the thiamine diphosphate (TPP) cofactor (provided by the acetohydroxyacid synthase homologue, PtxB7) to HOPA to produce PTX. This study reveals a unique C–C bond formation in which two distinct TPP-dependent enzymes, PtxB5/6 and PtxB7, divide the work to transfer an acetyl group, highlighting an unprecedented biosynthetic strategy for natural products. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c06546 |