Improved pyrolysis behavior of ammonium polyphosphate-melamine-expandable (APP-MEL-EG) intumescent fire retardant coating system using ceria and dolomite as additives for I-beam steel application
This study describes the effects of ceria (CeO2) and dolomite [CaMg(CO3)2] additives on the pyrolysis behavior and fire resistive property of conventional intumescent flame retardant (IFR) coating system for I-beam steel substrate called ammonium polyphosphate-melamine-expandable graphite (APP-MEL-E...
Saved in:
Published in: | Heliyon Vol. 6; no. 1; p. e03119 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-01-2020
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study describes the effects of ceria (CeO2) and dolomite [CaMg(CO3)2] additives on the pyrolysis behavior and fire resistive property of conventional intumescent flame retardant (IFR) coating system for I-beam steel substrate called ammonium polyphosphate-melamine-expandable graphite (APP-MEL-EG) system. The fire resistance of various formulations was evaluated using the standard vertical Bunsen burner fire test. Thermogravimetric analysis (TGA) was used to understand the degradation of coating formulations. Observations by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) demonstrated that significant amounts of additives favored the formation of homogeneous compacted char structures, which were predominantly composed of carbon (C), phosphorus (P) and oxygen (O). These three main components of the char were also found to be in various binding combinations with other lighter elements like nitrogen (N) and hydrogen (H) as illustrated by the attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy results. X-ray photoelectron spectroscopy (XPS) further suggest that polyethylene([(CH2–C2H2–CH2)n−]) free radicals were abundant on the char surface for the two best formulations and the binding energy of this radical promoted the formation of aromatic carbon chains that enhanced the char's thermal stability. This means that the selection of appropriate additives and combinations of flame-retardant ingredients could significantly change the morphology of the char layer and improve its thermal stability during fire exposure.
Chemical engineering; Materials chemistry; Materials science; Intumescent coating; Char formation; Ceria; I-beam; Thermal stability; Ammonium polyphosphate; Pyrolysis; Fire retardant; Dolomite; XPS |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2019.e03119 |