Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint

A new laboratory technique for coupled shear-flow tests of rock joints was developed and used to investigate the coupled effect of joint shear deformation and dilatancy on hydraulic conductivity of rock joints. This technique was used to carry out coupled shear-flow tests with an artificial created...

Full description

Saved in:
Bibliographic Details
Published in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) Vol. 36; no. 5; pp. 641 - 650
Main Authors: Esaki, T., Du, S., Mitani, Y., Ikusada, K., Jing, L.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-07-1999
Elsevier Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new laboratory technique for coupled shear-flow tests of rock joints was developed and used to investigate the coupled effect of joint shear deformation and dilatancy on hydraulic conductivity of rock joints. This technique was used to carry out coupled shear-flow tests with an artificial created granite joint sample under constant normal loads and up to residual shear deformations of 20 mm. The hydraulic conductivity was estimated by using a finite difference method and an approximate equation assuming the cubic law. The shear-flow testing results revealed that the change of hydraulic conductivity is approximately similar to that of the dilatancy of a joint. The hydraulic conductivity increases rapidly, by about 1.2–1.6 orders of magnitude for the first 5 mm of shear displacement. After passing the residual shear stress, the hydraulic conductivity becomes gradually a constant value with increasing shear displacement. On the other hand, the hydraulic conductivity after shearing is about one order of magnitude larger than that prior to shearing. Shear-flow coupling characteristics obtained from these tests have a consistent trend with Barton's model prediction during the initial shear process. However, increasing deviation between measured and predicted hydraulic conductivity of rock joint samples has been observed with increasing shear displacement.
ISSN:1365-1609
1873-4545
DOI:10.1016/S0148-9062(99)00044-3