Modeling of Phosphorus Nutrition to Obtain Maximum Yield, High P Use Efficiency and Low P-Loss Risk for Wheat Grown in Sandy Calcareous Soils

Fertilization with high levels of phosphorus increases the risk of environmental pollution. Identification of critical values of P in soil (SOP) and in plant tissues (PiP) is essential for achieving the maximum wheat yield without P loss. The critical value is the value of P which gives the optimum...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) Vol. 11; no. 10; p. 1950
Main Authors: Hu, Zhanyao, Ding, Zheli, Al-Yasi, Hatim M., Ali, Esmat F., Eissa, Mamdouh A., Abou-Elwafa, Salah F., Sayed, Mohammed Abdelaziz, Said, Mohamed Tharwat, Said, Alaa A., Ibrahim, Khaled A. M., Hamada, Alhosein
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-10-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fertilization with high levels of phosphorus increases the risk of environmental pollution. Identification of critical values of P in soil (SOP) and in plant tissues (PiP) is essential for achieving the maximum wheat yield without P loss. The critical value is the value of P which gives the optimum yield; the response of crop yield to P fertilization above this value is not predictable or nil. Here, a 4-year field experiment was conducted to identify the SOP and PiP for achieving maximum yield of bread wheat using 11 rates of P fertilization (0, 15, 30, 45, 60, 75, 90, 105, 120, 135, and 150 kg P2O5 ha−1). The linear–linear and Mitscherlich exponential models were employed to estimate the PiP and SOP. The degree of phosphorus saturation (DPS) was used to assess the potential environmental risk; furthermore, phosphorus use efficiency (PUE) was also calculated under the studied fertilization levels. Phosphorus in soil and wheat plant was affected by the application rates and growing seasons. Increasing P fertilization rates led to gradual increases in soil and plant P. The SOP ranged between 21 and 32 mg kg−1, while the PiP ranged between 6.40 and 7.49 g kg−1. The critical values of P calculated from the Mitscherlich exponential models were 20% higher than those calculated from the linear–linear models. Adding levels of P fertilization ≥90 kg P2O5 ha−1 leads to higher potentials of P runoff and leaching, in addition, PUE decreased sharply under high P fertilization levels. The response of wheat yield to P fertilization in sandy calcareous soil is predictable below Olsen P values of 21 mg kg−1. Identification of critical P values for wheat production is of great importance to help policy makers improve P use efficiency and attain optimum wheat yield under eco-friendly environmental conditions by eliminating the accumulation of excess P fertilizers in soil and water.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy11101950