Bandits for Online Calibration: An Application to Content Moderation on Social Media Platforms

We describe the current content moderation strategy employed by Meta to remove policy-violating content from its platforms. Meta relies on both handcrafted and learned risk models to flag potentially violating content for human review. Our approach aggregates these risk models into a single ranking...

Full description

Saved in:
Bibliographic Details
Main Authors: Avadhanula, Vashist, Baki, Omar Abdul, Bastani, Hamsa, Bastani, Osbert, Gocmen, Caner, Haimovich, Daniel, Hwang, Darren, Karamshuk, Dima, Leeper, Thomas, Ma, Jiayuan, Macnamara, Gregory, Mullett, Jake, Palow, Christopher, Park, Sung, Rajagopal, Varun S, Schaeffer, Kevin, Shah, Parikshit, Sinha, Deeksha, Stier-Moses, Nicolas, Xu, Peng
Format: Journal Article
Language:English
Published: 11-11-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe the current content moderation strategy employed by Meta to remove policy-violating content from its platforms. Meta relies on both handcrafted and learned risk models to flag potentially violating content for human review. Our approach aggregates these risk models into a single ranking score, calibrating them to prioritize more reliable risk models. A key challenge is that violation trends change over time, affecting which risk models are most reliable. Our system additionally handles production challenges such as changing risk models and novel risk models. We use a contextual bandit to update the calibration in response to such trends. Our approach increases Meta's top-line metric for measuring the effectiveness of its content moderation strategy by 13%.
DOI:10.48550/arxiv.2211.06516