Synthesis, cytotoxic activity, and mode of action of new Santacruzamate A analogs
Breast and ovarian cancer are the most common cancers in women. Available cancer treatments, in general, have limited efficacy and frequent, undesirable side effects. Recently, scientists have focused on searching for new epigenetic modulators such as inhibitors of DNA methyltransferases and histone...
Saved in:
Published in: | Medicinal chemistry research Vol. 27; no. 11-12; pp. 2397 - 2413 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-12-2018
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Breast and ovarian cancer are the most common cancers in women. Available cancer treatments, in general, have limited efficacy and frequent, undesirable side effects. Recently, scientists have focused on searching for new epigenetic modulators such as inhibitors of DNA methyltransferases and histone deacetylases (HDACs), with novel properties and selectivity. We report the synthesis of seven new analogs of Santacruzamate A. Molecular modeling showed that compounds
3
–
9
presented the best binding energies (kcal/mol) against HDAC4 compared to that of crystallographic ligand. The compounds were evaluated against MCF-7 and MDA-MB-231 (breast cancer), TOV-21G (ovarian adenocarcinoma), and WI-26VA4 (non-tumor lung fibroblasts) cells. Compound
5
, the most potent and selective of the series, exhibited remarkably enhanced anticancer potency, with IC
50
values for the tumor cells of 24.3–44.93 μM, compared with that of etoposide (12–18.57 μM) and doxorubicin (2.1–4.37 μM). Further investigation showed that compound
5
could promote DNA damage, increase the activity of caspases-3 and -9, and upregulate mRNA levels of
p21
,
TP53
, and
BAK
, suggesting apoptotic cell death of the tumor cells via the intrinsic pathway. This study demonstrated that synthetic analogs of santacruzamate A with zinc-linked groups are effective for improving both HDAC inhibition and antitumor activity. |
---|---|
ISSN: | 1054-2523 1554-8120 |
DOI: | 10.1007/s00044-018-2244-3 |