Transcripts of MYB-like genes respond to phosphorous and nitrogen deprivation in Arabidopsis

In Arabidopsis thaliana (L.) Heynh., AtPhr2 and AtNsr1 encode proteins with MYB-like and α-helical domains. They resemble CrPsr1, a nuclear-localized MYB protein that is critical for acclimation to phosphorous (P) starvation in the alga Chlamydomonas reinhardtii. Reverse transcription-polymerase cha...

Full description

Saved in:
Bibliographic Details
Published in:Planta Vol. 219; no. 6; pp. 1003 - 1009
Main Authors: Todd, C.D, Zeng, P, Huete, A.M.R, Hoyos, M.E, Polacco, J.C
Format: Journal Article
Language:English
Published: Berlin Springer-Verlag 01-10-2004
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Arabidopsis thaliana (L.) Heynh., AtPhr2 and AtNsr1 encode proteins with MYB-like and α-helical domains. They resemble CrPsr1, a nuclear-localized MYB protein that is critical for acclimation to phosphorous (P) starvation in the alga Chlamydomonas reinhardtii. Reverse transcription-polymerase chain reaction analysis of the first unique exons indicated that AtPhr2 mRNA increased as early as 6 h after P deprivation (-P), whereas nitrogen deprivation (-N) had no effect. The AtNsr1 mRNA level increased exclusively under -N, an increase first noted by 2 days in -N. In spite of P- and N-specific effects on expression of AtPhr2 and AtNsr1 there appeared to be P-N cross-talk at the whole-plant level. Total non-secreted acid phosphatase activity increased under both -P and -N within 2 days of deprivation. Further, the pho2-1/pho2-1 mutant, reported to be a phosphate accumulator, showed no increase in AtPhr2 mRNA in response to -P and a 70% reduction in the response of AtNsr1 mRNA to -N. Consistent with this pattern, there was no increase in acid phosphatase activity in pho2-1/pho2-1 plants deprived of P or N. However, when deprived of P, pho2-1/pho2-1 plants accumulated much higher levels of nitrate. T-DNA disruption of AtNsr1 resulted in altered expression of at least one nitrate transporter (AtNRT2.5). Further evidence of cross-talk between N and P responses was altered expression of N-responsive genes in pho2-1/pho2-1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-004-1305-7