Fluorine-Free Single-Component Polyelectrolyte of Poly(ethylene glycol) Bearing Lithium Methanesulfonylsulfonimide Terminal Groups: Effect of Structural Variance on Ionic Conductivity

Fluorine-free single-component polyelectrolytes were developed via the hybridization of lithium methanesulfonylsulfonimide (LiMSSI) moieties to poly(ethylene glycol) (PEG) derivatives with different morphologies, and the relationship between the structure and its ionic conductivity was investigated....

Full description

Saved in:
Bibliographic Details
Published in:Technologies (Basel) Vol. 12; no. 5; p. 65
Main Authors: Ochiai, Bungo, Hirabayashi, Koki, Fujii, Yudai, Matsumura, Yoshimasa
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-05-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluorine-free single-component polyelectrolytes were developed via the hybridization of lithium methanesulfonylsulfonimide (LiMSSI) moieties to poly(ethylene glycol) (PEG) derivatives with different morphologies, and the relationship between the structure and its ionic conductivity was investigated. The PEG-LiMSSI derivatives with one, two, and three LiMSSI end groups were prepared via the concomitant Michael-type addition and lithiation of PEGs and N-methanesulfonylvinylsulfonimide. The ionic conductivity at 60 °C ranged from 1.8 × 10−7 to 2.0 × 10−4 S/cm. PEG-LiMSSI derivatives with one LiMSSI terminus and with two LiMSSI termini at both ends show higher ionic conductivity, that is as good as fluorine-free single-component polyelectrolytes, than that with two LiMSSI termini at one end and that with three LiMSSI termini.
ISSN:2227-7080
2227-7080
DOI:10.3390/technologies12050065