HLA-DR-Promiscuous T Cell Epitopes from Plasmodium falciparum Pre-Erythrocytic-Stage Antigens Restricted by Multiple HLA Class II Alleles
Previously, we identified and established the antigenicity of 17 CD8+ T cell epitopes from five P. falciparum Ags that are restricted by multiple common HLA class I alleles. Here, we report the identification of 11 peptides from the same Ags, cicumsporozoite protein, sporozoite surface protein 2, ex...
Saved in:
Published in: | The Journal of immunology (1950) Vol. 165; no. 2; pp. 1123 - 1137 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Am Assoc Immnol
15-07-2000
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previously, we identified and established the antigenicity of 17 CD8+ T cell epitopes from five P. falciparum Ags that are restricted by multiple common HLA class I alleles. Here, we report the identification of 11 peptides from the same Ags, cicumsporozoite protein, sporozoite surface protein 2, exported protein-1, and liver-stage Ag-1, that bind between at least five and up to 11 different HLA-DR molecules representative of the most common HLA-DR Ags worldwide. These peptides recall lymphoproliferative and cytokine responses in immune individuals experimentally immunized with radiation-attenuated Plasmodium falciparum sporozoites (irradiated sporozoites) or semi-immune individuals naturally exposed to malaria in Irian Jaya or Kenya. We establish that all peptides are recognized by individuals of each of the three populations, and that the frequency and magnitude of helper T lymphocyte responses to each peptide is influenced by the intensity of exposure to P. falciparum sporozoites. Mean frequencies of lymphoproliferative responses are 53.2% (irradiated sporozoites) vs 22.4% (Kenyan) vs 5.8% (Javanese), and mean frequencies of IFN-gamma responses are 66.3% (irradiated sporozoites) vs 27.3% (Kenyan) vs 8. 7% (Javanese). The identification of HLA class II degenerate T cell epitopes from P. falciparum validates our predictive strategy in a biologically relevant system and supports the potential for developing a broadly efficacious epitope-based vaccine against malaria focused on a limited number of peptide specificities. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.165.2.1123 |