Identification of a direct role of CPSF6 and a key cis‐acting motif in promoting TRIM9 proximal polyA site usage

Alternative polyadenylation (APA), an RNA processing mechanism that results in mRNA with distinct 3’ termini, is a rapidly expanding area of research that in recent studies has been linked to the mechanistic target of rapamycin (mTOR) signaling pathway, a key regulatory pathway in physiology and met...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal Vol. 36; no. S1
Main Authors: Herron, Richard S., Kunisky, Alexander, Hwang, Hun‐Way
Format: Journal Article
Language:English
Published: United States The Federation of American Societies for Experimental Biology 01-05-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alternative polyadenylation (APA), an RNA processing mechanism that results in mRNA with distinct 3’ termini, is a rapidly expanding area of research that in recent studies has been linked to the mechanistic target of rapamycin (mTOR) signaling pathway, a key regulatory pathway in physiology and metabolism. Despite the recent implications of APA in mTOR signaling, the mechanistic link between mTOR signaling and APA remains poorly understood. We previously leveraged our cTag‐PAPERCLIP technique to generate a dataset of in vivo APA shifts following neuronal mTOR induction and identified TRIM9, an E3 ubiquitin ligase with a role in neurodevelopment, as a gene of interest. In this study, we further characterized the regulation of the mTOR‐induced TRIM9 APA shift observed in mouse neurons in vivo. Further study of the regulation of TRIM9 APA by the core protein complexes of the cleavage and polyadenylation (CP) machinery revealed CSPF6, a component of the CFIm complex, as essential for physiological regulation of TRIM9 isoforms, with loss of CPSF6 leading to an enrichment of the distal TRIM9 isoform. Additional study into the 3’UTR sequence elements of TRIM9 isoforms revealed multiple UGUA sequence motifs, the binding sequence element of the CFIm complex, upstream of the TRIM9 proximal polyA site (PAS). In order to identify the key sequence elements essential for CPSF6‐mediated regulation of the proximal TRIM9 PAS, we developed a RT‐qPCR PAS competition assay to quantify sequence‐mediated usage of PASs. Utilizing this assay, we assessed usage of the TRIM9 proximal PAS in both the absence and the presence of CPSF6. Additionally, we generated constructs containing mutated UGUA sequences in order to ascertain the importance of the UGUA motif to TRIM9 proximal PAS usage. We found that loss of CPSF6 leads to reduced usage of the TRIM9 proximal PAS. Furthermore, mutation of a twin UGUA motif (UGUACUGUA) lead to a reduction in TRIM9 proximal PAS usage. Our results demonstrate a direct role of CPSF6 and identify a key cis‐acting motif in promoting TRIM9 proximal PAS usage. Furthermore, our results also suggest a possible link between neurological disorders with mTOR pathway dysregulation (“mTORopathies”) and neurodevelopment through TRIM9.
ISSN:0892-6638
1530-6860
DOI:10.1096/fasebj.2022.36.S1.R5796