The Protein/Peptide Direct Virus Inactivation During Chromatographic Process: Developing Approaches

Virus clearance is required for pharmaceutical preparations derived from animal or human sources such as blood products, vaccines, recombinant proteins produced in mammalian cell lines, etc. High cost and substantial protein losses during virus inactivation are significant problems for protein/pepti...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology Vol. 181; no. 1; pp. 233 - 249
Main Authors: Volkov, Georgii L., Havryliuk, Sergiy P., Krasnobryzha, Ievgenia M., Havryliuk, Olena S.
Format: Journal Article
Language:English
Published: New York Springer US 2017
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Virus clearance is required for pharmaceutical preparations derived from animal or human sources such as blood products, vaccines, recombinant proteins produced in mammalian cell lines, etc. High cost and substantial protein losses during virus inactivation are significant problems for protein/peptide manufacturing. The goal of this project was to develop a method to perform virus inactivation in a course of protein chromatographic purification. Another goal was to show that the chromatographic adsorbent can serve as reliable “sieva” for mechanical washing away of infecting viruses. Using chromatographic, photometric, IFA, and RT-PCR approaches, it was discovered that high temperature-depending dynamic capacity of adsorbent allowed to perform a virus inactivation directly in a chromatographic column by solvent/detergent treatment. The peptide/protein biological activity was completely preserved. Using this new approach enveloped and nonenveloped viruses were effectively removed protein preparation. In addition, it was shown that RT-PCR method demonstrates more precise and reproducible results and robust properties for assessment of virus reduction than virus titer followed by infectivity studies. Presented method allowed to obtain the factor of virus concentration decrease (FVD) values that were higher than those provided by known technologies and was sufficient for a full inactivation of viruses. The method is recommended to use in pharmaceutical industry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-016-2209-2