Augmented region of interest for untargeted metabolomics mass spectrometry (AriumMS) of multi-platform-based CE-MS and LC-MS data

In mass spectrometry (MS)-based metabolomics, there is a great need to combine different analytical separation techniques to cover metabolites of different polarities and apply appropriate multi-platform data processing. Here, we introduce AriumMS (augmented region of interest for untargeted metabol...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry Vol. 415; no. 16; pp. 3137 - 3154
Main Authors: Naumann, Lukas, Haun, Adrian, Höchsmann, Alisa, Mohr, Michael, Novák, Martin, Flottmann, Dirk, Neusüß, Christian
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-07-2023
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In mass spectrometry (MS)-based metabolomics, there is a great need to combine different analytical separation techniques to cover metabolites of different polarities and apply appropriate multi-platform data processing. Here, we introduce AriumMS (augmented region of interest for untargeted metabolomics mass spectrometry) as a reliable toolbox for multi-platform metabolomics. AriumMS offers augmented data analysis of several separation techniques utilizing a region-of-interest algorithm. To demonstrate the capabilities of AriumMS, five datasets were combined. This includes three newly developed capillary electrophoresis (CE)-Orbitrap MS methods using the recently introduced nanoCEasy CE-MS interface and two hydrophilic interaction liquid chromatography (HILIC)-Orbitrap MS methods. AriumMS provides a novel mid-level data fusion approach for multi-platform data analysis to simplify and speed up multi-platform data processing and evaluation. The key feature of AriumMS lies in the optimized data processing strategy, including parallel processing of datasets and flexible parameterization for processing of individual separation methods with different peak characteristics. As a case study, Saccharomyces cerevisiae (yeast) was treated with a growth inhibitor, and AriumMS successfully differentiated the metabolome based on the augmented multi-platform CE-MS and HILIC-MS investigation. As a result, AriumMS is proposed as a powerful tool to improve the accuracy and selectivity of metabolome analysis through the integration of several HILIC-MS/CE-MS techniques. Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1618-2642
1618-2650
1618-2650
DOI:10.1007/s00216-023-04715-6