Heterodimerization of the epidermal-growth-factor (EGF) receptor and ErbB2 and the affinity of EGF binding are regulated by different mechanisms

When clathrin-dependent endocytosis is inhibited in HeLa cells by overexpression of a K44A (Lys(44)-->Ala) mutant of the GTPase dynamin, high-affinity binding of epidermal growth factor (EGF) to the EGF receptor (EGFR) is disrupted [Ringerike, Stang, Johannessen, Sandnes, Levy and Madshus (1998)...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal Vol. 356; no. Pt 1; pp. 87 - 96
Main Authors: Johannessen, L E, Haugen, K E, østvold, A C, Stang, E, Madshus, I H
Format: Journal Article
Language:English
Published: England 15-05-2001
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When clathrin-dependent endocytosis is inhibited in HeLa cells by overexpression of a K44A (Lys(44)-->Ala) mutant of the GTPase dynamin, high-affinity binding of epidermal growth factor (EGF) to the EGF receptor (EGFR) is disrupted [Ringerike, Stang, Johannessen, Sandnes, Levy and Madshus (1998) J. Biol. Chem. 273, 16639-16642]. We now report that the effect of [K44A]dynamin on EGF binding was counteracted by incubation with the non-specific kinase inhibitor staurosporine (SSP), implying that a protein kinase is responsible for disrupted high-affinity binding of EGF upon overexpression of [K44A]dynamin. The effect of [K44A]dynamin on EGF binding was not due to altered phosphorylation of the EGFR, suggesting that the activated kinase is responsible for phosphorylation of a substrate other than EGFR. The number of EGFR molecules was increased in cells overexpressing [K44A]dynamin, while the number of proto-oncoprotein ErbB2 molecules was unaltered. EGF-induced receptor dimerization was not influenced by overexpression of [K44A]dynamin. ErbB2-EGFR heterodimer formation was found to be ligand-independent, and the number of heterodimers was not altered by overexpression of [K44A]dynamin. Neither SSP nor the phorbol ester PMA, which disrupts high-affinity EGF-EGFR interaction, had any effect on the EGFR homo- or hetero-dimerization. Furthermore, the EGF-induced tyrosine phosphorylation of ErbB2 was not affected by overexpression of [K44A]dynamin, implying that EGFR-ErbB2 dimers were fully functional. Our results strongly suggest that high-affinity binding of EGF and EGFR-ErbB2 heterodimerization are regulated by different mechanisms.
ISSN:0264-6021
1470-8728
DOI:10.1042/0264-6021:3560087