Guanidine dicycloamine-based analogs: green chemistry synthesis, biological investigation, and molecular docking studies as promising antibacterial and antiglycation leads
Dicyandiamide (DCD) reacted with amino acids 1a-f to produce biguanides 2 and 4 and guanidine pyrazolones 3, 5, 6, 7, and 8, according to the reaction. DCD exhibited the following reactions: imidodicarbonimidicdiamide 9, diazocan-2-ylguanidine 10, methyl biguanidylthion 11, N-carbamothioylimidodicar...
Saved in:
Published in: | Molecular diversity |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
07-02-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dicyandiamide (DCD) reacted with amino acids 1a-f to produce biguanides 2 and 4 and guanidine pyrazolones 3, 5, 6, 7, and 8, according to the reaction. DCD exhibited the following reactions: imidodicarbonimidicdiamide 9, diazocan-2-ylguanidine 10, methyl biguanidylthion 11, N-carbamothioylimidodicarbonimidicdiamide 12, 2-guanidinebenzoimidazole 13a, 2-guanidinylbenzoxazole 13b, and 2-guanidinylbenzothiazol 13c. These reactions were triggered by 6-amino caproic acid, thioacetamide, thiourea, o-aminophenol, o-aminothiophenol, and anthranilic acid, respectively. Compound 2 had the least antimicrobial activity, while compound 13c demonstrated the most antibacterial impact against all bacterial strains. Furthermore, in terms of antiglycation efficacy (AGEs), 12, 11, and 7 were the most effective AGE cross-linking inhibitors. Eight and ten, which showed a considerable inhibition on cross-linking AGEs, come next. Compounds 4 and 6 on the other hand have shown the least suppression of AGE production. The most promising antiglycation scaffolds 8, 11, and 12 in the Human serum albumin (HAS) active site were shown to be able to adopt crucial binding interactions with important amino acids based on the results of in silico molecular docking. The most promising antiglycation compounds 8, 11, and 12 were also shown to have better hydrophilicity, acceptable lipophilicity, gastrointestinal tract absorption (GIT), and blood-brain barrier penetration qualities when their physicochemical properties were examined using the egg-boiled method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1381-1991 1573-501X |
DOI: | 10.1007/s11030-024-10816-w |