Search Results - "Hare, Kathryn E."

Refine Results
  1. 1

    The absolute continuity of convolutions of orbital measures in SO(2n+1) by Hare, Kathryn E.

    Published in Monatshefte für Mathematik (01-10-2022)
    “…Let G be a compact Lie group of Lie type B n , such as S O ( 2 n + 1 ) . We characterize the tuples ( x 1 , … , x L ) of the elements x j ∈ G which have the…”
    Get full text
    Journal Article
  2. 2

    THE SMOOTHNESS OF ORBITAL MEASURES ON NONCOMPACT SYMMETRIC SPACES by GUPTA, SANJIV KUMAR, HARE, KATHRYN E.

    “…Let $G/K$ be an irreducible symmetric space, where G is a noncompact, connected Lie group and K is a compact, connected subgroup. We use decay properties of…”
    Get full text
    Journal Article
  3. 3

    Transferring spherical multipliers on compact symmetric spaces by Gupta, Sanjiv Kumar, Hare, Kathryn E.

    Published in Mathematische Zeitschrift (01-06-2021)
    “…We prove a two-sided transference theorem between L p spherical multipliers on the compact symmetric space U / K and L p multipliers on the vector space i p ,…”
    Get full text
    Journal Article
  4. 4

    The absolute continuity of convolutions of orbital measures in symmetric spaces by Gupta, Sanjiv Kumar, Hare, Kathryn E.

    “…We characterize the absolute continuity of convolution products of orbital measures on the classical, irreducible Riemannian symmetric spaces G/K of Cartan…”
    Get full text
    Journal Article
  5. 5

    A geometric proof of the L 2 -singular dichotomy for orbital measures on Lie algebras and groups by Hare, Kathryn E, He, Jimmy

    “…Let G be a compact, connected simple Lie group and g its Lie algebra. It is known that if μ is any G-invariant measure supported on an adjoint orbit in g, then…”
    Get full text
    Journal Article
  6. 6

    The absolute continuity of convolution products of orbital measures in exceptional symmetric spaces by Hare, Kathryn E., He, Jimmy

    Published in Monatshefte für Mathematik (01-03-2017)
    “…Let G be a non-compact group, K the compact subgroup fixed by a Cartan involution and assume G  /  K is an exceptional, symmetric space, one of Cartan type E…”
    Get full text
    Journal Article
  7. 7

    Local dimensions of random homogeneous self‐similar measures: strong separation and finite type by Hare, Kathryn E., Hare, Kevin G., Troscheit, Sascha

    Published in Mathematische Nachrichten (01-11-2018)
    “…We study the multifractal analysis of self‐similar measures arising from random homogeneous iterated function systems. Under the assumption of the uniform…”
    Get full text
    Journal Article
  8. 8

    The independence of characters on non-abelian groups by Grow, David, Hare, Kathryn E.

    “…We show that there are characters of compact, connected, non-abelian groups that approximate random choices of signs. The work was motivated by Kronecker's…”
    Get full text
    Journal Article
  9. 9

    A Fourier series formula for energy of measures with applications to Riesz products by Hare, Kathryn E., Roginskaya, Maria

    “…In this paper we derive a formula relating the energy and the Fourier transform of a finite measure on the d-dimensional torus which is similar to the…”
    Get full text
    Journal Article
  10. 10

    The energy of signed measures by Hare, Kathryn E., Roginskaya, Maria

    “…We generalize the concept of energy to complex measures of finite variation. We show that although the energy dimension of a measure can exceed that of its…”
    Get full text
    Journal Article
  11. 11

    CLASSIFYING CANTOR SETS BY THEIR FRACTAL DIMENSIONS by CABRELLI, CARLOS A., HARE, KATHRYN E., MOLTER, URSULA M.

    “…In this article we study Cantor sets defined by monotone sequences, in the sense of Besicovich and Taylor. We classify these Cantor sets in terms of their…”
    Get full text
    Journal Article
  12. 12

    Directional maximal operators with smooth densities by Hare, Kathryn E., Roginskaya, Maria

    Published in Mathematische Nachrichten (01-12-2009)
    “…We study directional maximal operators on ℝn with smooth densities. We prove that if the classical directional maximal operator in a given set of directions is…”
    Get full text
    Journal Article
  13. 13

    Assouad-like dimensions of a class of random Moran measures by Hare, Kathryn E., Mendivil, Franklin

    “…In this paper, we determine the almost sure values of the Φ-dimensions of random measures supported on random Moran sets that have a homogeneity property and…”
    Get full text
    Journal Article
  14. 14
  15. 15

    Assouad-like dimensions of a class of random Moran measures. II. Non-homogeneous Moran sets by Hare, Kathryn E., Mendivil, Franklin

    Published in Journal of fractal geometry (01-01-2023)
    “…In this paper, we determine the almost sure values of the \Phi -dimensions of random measures \mu supported on random Moran sets in {\mathbb{R}}^d that satisfy…”
    Get full text
    Journal Article
  16. 16
  17. 17

    A geometric proof of the L2-singular dichotomy for orbital measures on Lie algebras and groups by Hare, Kathryn E., He, Jimmy

    “…Let G be a compact, connected simple Lie group and g its Lie algebra. It is known that if μ is any G -invariant measure supported on an adjoint orbit in g ,…”
    Get full text
    Journal Article
  18. 18

    Singularity of orbital measures in SU(n) by Gupta, Sanjiv Kumar, Hare, Kathryn E.

    Published in Israel journal of mathematics (01-01-2002)
    “…We show that the minimalk such that μκ ∈L1(SU(n)) for all central, continuous measures μ on SU(n) isk=n. We do this by exhibiting an elementg∈SU(n) for which…”
    Get full text
    Journal Article
  19. 19

    The smoothness of convolutions of zonal measures on compact symmetric spaces by Gupta, Sanjiv K., Hare, Kathryn E.

    “…We prove that for every irreducible, compact symmetric space, Gc/K, of rank r, the convolution of any (2r+1) continuous, K-bi-invariant measures is absolutely…”
    Get full text
    Journal Article
  20. 20

    Intermediate Assouad-like dimensions by García, Ignacio, Hare, Kathryn E., Mendivil, Franklin

    Published in Journal of fractal geometry (01-01-2021)
    “…We study a class of bi-Lipschitz-invariant dimensions that range between the box and Assouad dimensions. The quasi-Assouad dimensions and \theta -Assouad…”
    Get full text
    Journal Article