A hybrid human recognition framework using machine learning and deep neural networks
Faces are a crucial environmental trigger. They communicate information about several key features, including identity. However, the 2019 coronavirus pandemic (COVID-19) significantly affected how we process faces. To prevent viral spread, many governments ordered citizens to wear masks in public. I...
Saved in:
Published in: | PloS one Vol. 19; no. 6; p. e0300614 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Public Library of Science
21-06-2024
Public Library of Science (PLoS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Faces are a crucial environmental trigger. They communicate information about several key features, including identity. However, the 2019 coronavirus pandemic (COVID-19) significantly affected how we process faces. To prevent viral spread, many governments ordered citizens to wear masks in public. In this research, we focus on identifying individuals from images or videos by comparing facial features, identifying a person's biometrics, and reducing the weaknesses of person recognition technology, for example when a person does not look directly at the camera, the lighting is poor, or the person has effectively covered their face. Consequently, we propose a hybrid approach of detecting either a person with or without a mask, a person who covers large parts of their face, and a person based on their gait via deep and machine learning algorithms. The experimental results are excellent compared to the current face and gait detectors. We achieved success of between 97% and 100% in the detection of face and gait based on F1 score, precision, and recall. Compared to the baseline CNN system, our approach achieves extremely high recognition accuracy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Computer Science Department, Jazan University, Jazan, KSA Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0300614 |