The Mapping of Alpha-Emitting Radionuclides in the Environment Using an Unmanned Aircraft System
The protection of first responders from radioactive contamination with alpha emitters that may result from a radiological accident is of great complexity due to the short range of alpha particles in the air of a few centimeters. To overcome this issue, for the first time, a system mounted on a UAS f...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Vol. 16; no. 5; p. 848 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-03-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The protection of first responders from radioactive contamination with alpha emitters that may result from a radiological accident is of great complexity due to the short range of alpha particles in the air of a few centimeters. To overcome this issue, for the first time, a system mounted on a UAS for the near-real-time remote measurement of alpha particles has been developed, tested, and calibrated. The new system, based on an optical system adapted to be installed on a UAS in order to measure the UV-C fluorescence emitted by alpha particles in the air, has been tested and calibrated, carried out in the laboratory and in field experiments using UV-C LEDs and 241Am sources. In experimental flights, the probability of detecting a point source was determined to be approximately 60%. In the case of a surface extended source, a detection efficiency per unit surface activity of 10 counts per second per MBq cm−2 was calculated. A background count rate of UV-C of around 26 ± 28 s−1 for an integration time of 0.1 s was measured during flights, which led to a decision threshold surface activity of 5 MBq cm−2. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16050848 |