Microstructure, hardness, and wear resistance of annealed Fe-based bulk metallic glasses by spark plasma sintering
Aiming at the issues of small critical size and low glass forming ability of Fe-based amorphous alloys, this work focuses on solving the problem of preparing both large size and excellent properties. The highly dense FeCrMoBC bulk metallic glasses with diameter of 20 mm were prepared by spark plasma...
Saved in:
Published in: | Applied physics. A, Materials science & processing Vol. 130; no. 10 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-10-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aiming at the issues of small critical size and low glass forming ability of Fe-based amorphous alloys, this work focuses on solving the problem of preparing both large size and excellent properties. The highly dense FeCrMoBC bulk metallic glasses with diameter of 20 mm were prepared by spark plasma sintering, and the key role of heat treatment on the microstructure and properties of Fe-based bulk metallic glasses was investigated. The microstructure of Fe-based bulk metallic glasses was adjusted by annealing treatment, and the effects of annealing on the hardness and wear resistance of Fe-based bulk metallic glasses were studied. The results show that annealing induces partial crystallization of the alloy to construct in-situ amorphous nanocrystalline composites. After annealing at 650 °C for 1 h, Fe-based bulk metallic glasses precipitated Cr
23
C
6
and B
6
Fe
23
hard nanocrystalline phases. The highest Vickers hardness, highest fracture toughness, lowest friction coefficient, wear volume and wear rate were obtained, with values of 1514.68Hv, 2.81 MPa·m
1/2
,0.59, 4.72 × 10
− 3
mm
3
and 2.62 × 10
− 6
mm
3
·N
− 1
·m
− 1
, respectively. Abrasive wear is the main form of wear, and the wear resistance is superior to that of GCr15. FeCrMoBC bulk metallic glasses exhibit outstanding hardness and wear resistance, providing new material options for the manufacture of high-performance advanced equipment. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-024-07884-y |