Search Results - "Goldowitz, D"

Refine Results
  1. 1
  2. 2

    Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice by Dickson, P.E, Cairns, J, Goldowitz, D, Mittleman, G

    Published in Neuroscience (14-03-2017)
    “…Highlights • Reversal learning and set-shifting were impaired in mice with ⩾ 95% Purkinje cell loss. • Cognitive deficits were unrelated to motor deficits in…”
    Get full text
    Journal Article
  3. 3

    High‐throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains by Philip, V. M., Duvvuru, S., Gomero, B., Ansah, T. A., Blaha, C. D., Cook, M. N., Hamre, K. M., Lariviere, W. R., Matthews, D. B., Mittleman, G., Goldowitz, D., Chesler, E. J.

    Published in Genes, brain and behavior (01-03-2010)
    “…Genetic reference populations, particularly the BXD recombinant inbred (BXD RI) strains derived from C57BL/6J and DBA/2J mice, are a valuable resource for the…”
    Get full text
    Journal Article
  4. 4

    CAG repeat lengths ≥ 335 attenuate the phenotype in the R6/2 Huntington's disease transgenic mouse by Dragatsis, I, Goldowitz, D, Del Mar, N, Deng, Y.P, Meade, C.A, Liu, Li, Sun, Z, Dietrich, P, Yue, J, Reiner, A

    Published in Neurobiology of disease (01-03-2009)
    “…Abstract With spontaneous elongation of the CAG repeat in the R6/2 transgene to ≥ 335, resulting in a transgene protein too large for passive entry into nuclei…”
    Get full text
    Journal Article
  5. 5

    Impaired Hypercarbic and Hypoxic Responses from Developmental Loss of Cerebellar Purkinje Neurons: Implications for Sudden Infant Death Syndrome by Calton, M., Dickson, P., Harper, R. M., Goldowitz, D., Mittleman, G.

    Published in Cerebellum (London, England) (01-12-2014)
    “…Impaired responsivity to hypercapnia or hypoxia is commonly considered a mechanism of failure in sudden infant death syndrome (SIDS). The search for deficient…”
    Get full text
    Journal Article
  6. 6

    Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus by Yang, G.S., Banks, K.G., Bonaguro, R.J., Wilson, G., Dreolini, L., de Leeuw, C.N., Liu, L., Swanson, D.J., Goldowitz, D., Holt, R.A., Simpson, E.M.

    Published in Genomics (San Diego, Calif.) (01-03-2009)
    “…We have engineered a set of useful tools that facilitate targeted single copy knock-in (KI) at the hypoxanthine guanine phosphoribosyl transferase 1 ( Hprt1)…”
    Get full text
    Journal Article
  7. 7

    Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain by Rice, D S, Sheldon, M, D'Arcangelo, G, Nakajima, K, Goldowitz, D, Curran, T

    Published in Development (Cambridge) (01-09-1998)
    “…Mutation of either reelin (Reln) or disabled-1 (Dab1) results in widespread abnormalities in laminar structures throughout the brain and ataxia in reeler and…”
    Get full text
    Journal Article
  8. 8

    19p13.2 microduplication causes a Sotos syndrome-like phenotype and alters gene expression by Lehman, AM, du Souich, C, Chai, D, Eydoux, P, Huang, JL, Fok, AK, Avila, L, Swingland, J, Delaney, AD, McGillivray, B, Goldowitz, D, Argiropoulos, B, Kobor, MS, Boerkoel, CF

    Published in Clinical genetics (01-01-2012)
    “…Lehman AM, du Souich C, Chai D, Eydoux P, Huang JL, Fok AK, Avila L, Swingland J, Delaney AD, McGillivray B, Goldowitz D, Argiropoulos B, Kobor MS, Boerkoel…”
    Get full text
    Journal Article
  9. 9

    A relationship between cerebellar Purkinje cells and spatial working memory demonstrated in a lurcher/chimera mouse model system by Martin, L. A., Escher, T., Goldowitz, D., Mittleman, G.

    Published in Genes, brain and behavior (01-06-2004)
    “…New emphasis has been placed upon cerebellar research because of recent reports demonstrating involvement of the cerebellum in non‐motor cognitive behaviors…”
    Get full text
    Journal Article
  10. 10

    Differential Changes in Striatal Projection Neurons in R6/2 Transgenic Mice for Huntington's Disease by Sun, Z., Del Mar, N., Meade, C., Goldowitz, D., Reiner, A.

    Published in Neurobiology of disease (01-12-2002)
    “…In early adult-onset Huntington's disease (HD), enkephalinergic striatopallidal projection neurons show preferential loss, reduced preproenkephalin (PPE)…”
    Get full text
    Journal Article
  11. 11
  12. 12

    Compartmentation of the reeler cerebellum: Segregation and overlap of spinocerebellar and secondary vestibulocerebellar fibers and their target cells by Vig, J., Goldowitz, D., Steindler, D.A., Eisenman, L.M.

    Published in Neuroscience (2005)
    “…The cerebellum of the reeler mutant mouse has an abnormal organization; its single lobule is composed of a severely hypogranular cortex and a central…”
    Get full text
    Journal Article
  13. 13

    Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice by Sun, Z., Wang, H.B., Deng, Y.P., Lei, W.L., Xie, J.P., Meade, C.A., Del Mar, N., Goldowitz, D., Reiner, A.

    Published in Neurobiology of disease (01-12-2005)
    “…Striatal degeneration in Huntington's disease (HD) is associated with increases in perikaryal calbindin immunolabeling in yet-surviving striatal projection…”
    Get full text
    Journal Article
  14. 14

    The Weaver Mutation of GIRK2 Results in a Loss of Inwardly Rectifying K$^{+}$ Current in Cerebellar Granule Cells by Surmeier, D. James, Mermelstein, Paul G., Goldowitz, Dan

    “…The weaver mutation in mice results in a severe ataxia that is attributable to the degeneration of cerebellar granule cells and dopaminergic neurons in the…”
    Get full text
    Journal Article
  15. 15

    Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study by Smeyne, RJ, Goldowitz, D

    Published in The Journal of neuroscience (01-05-1989)
    “…Previous studies have identified the cerebellar granule cell as a primary site of gene action in the weaver mutant mouse. The temporal expression of the weaver…”
    Get full text
    Journal Article
  16. 16

    An integrated expression atlas of miRNAs and their promoters in human and mouse by de Rie, Derek, Abugessaisa, Imad, Alam, Tanvir, Arner, Erik, Arner, Peter, Ashoor, Haitham, Åström, Gaby, Babina, Magda, Bertin, Nicolas, Burroughs, A Maxwell, Carlisle, Ailsa J, Daub, Carsten O, Detmar, Michael, Deviatiiarov, Ruslan, Fort, Alexandre, Gebhard, Claudia, Goldowitz, Daniel, Guhl, Sven, Ha, Thomas J, Harshbarger, Jayson, Hasegawa, Akira, Hashimoto, Kosuke, Herlyn, Meenhard, Heutink, Peter, Hitchens, Kelly J, Hon, Chung Chau, Huang, Edward, Ishizu, Yuri, Kai, Chieko, Kasukawa, Takeya, Klinken, Peter, Lassmann, Timo, Lecellier, Charles-Henri, Lee, Weonju, Lizio, Marina, Makeev, Vsevolod, Mathelier, Anthony, Medvedeva, Yulia A, Mejhert, Niklas, Mungall, Christopher J, Noma, Shohei, Ohshima, Mitsuhiro, Okada-Hatakeyama, Mariko, Persson, Helena, Rizzu, Patrizia, Roudnicky, Filip, Sætrom, Pål, Sato, Hiroki, Severin, Jessica, Shin, Jay W, Swoboda, Rolf K, Tarui, Hiroshi, Toyoda, Hiroo, Vitting-Seerup, Kristoffer, Winteringham, Louise, Yamaguchi, Yoko, Yasuzawa, Kayoko, Yoneda, Misako, Yumoto, Noriko, Zabierowski, Susan, Zhang, Peter G, Wells, Christine A, Summers, Kim M, Kawaji, Hideya, Sandelin, Albin, Rehli, Michael, Hayashizaki, Yoshihide, Carninci, Piero, Forrest, Alistair R R, de Hoon, Michiel J L

    Published in Nature biotechnology (01-09-2017)
    “…An atlas of microRNA expression patterns and regulators is produced by deep sequencing of short RNAs in human and mouse cells. MicroRNAs (miRNAs) are short…”
    Get full text
    Journal Article
  17. 17

    Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells by Arner, Erik, Daub, Carsten O., Vitting-Seerup, Kristoffer, Andersson, Robin, Lilje, Berit, Drabløs, Finn, Lennartsson, Andreas, Rönnerblad, Michelle, Hrydziuszko, Olga, Vitezic, Morana, Freeman, Tom C., Alhendi, Ahmad M. N., Arner, Peter, Axton, Richard, Baillie, J. Kenneth, Bodega, Beatrice, Briggs, James, Brombacher, Frank, Davis, Margaret, Detmar, Michael, Ehrlund, Anna, Endoh, Mitsuhiro, Eslami, Afsaneh, Fagiolini, Michela, Fairbairn, Lynsey, Faulkner, Geoffrey J., Ferrai, Carmelo, Fisher, Malcolm E., Forrester, Lesley, Goldowitz, Daniel, Guler, Reto, Hara, Mitsuko, Herlyn, Meenhard, Ikawa, Tomokatsu, Kai, Chieko, Kawamoto, Hiroshi, Klinken, S. Peter, Kojima, Soichi, Koseki, Haruhiko, Klein, Sarah, Mejhert, Niklas, Miyaguchi, Ken, Mizuno, Yosuke, Morimoto, Mitsuru, Morris, Kelly J., Nakachi, Yutaka, Ogishima, Soichi, Okada-Hatakeyama, Mariko, Okazaki, Yasushi, Orlando, Valerio, Ovchinnikov, Dmitry, Passier, Robert, Patrikakis, Margaret, Pombo, Ana, Qin, Xian-Yang, Roy, Sugata, Sato, Hiroki, Savvi, Suzana, Saxena, Alka, Schwegmann, Anita, Swoboda, Rolf, Tanaka, Hiroshi, Tomoiu, Andru, Winteringham, Louise N., Wolvetang, Ernst, Yanagi-Mizuochi, Chiyo, Yoneda, Misako, Zabierowski, Susan, Zhang, Peter, Abugessaisa, Imad, Bertin, Nicolas, Diehl, Alexander D., Fukuda, Shiro, Furuno, Masaaki, Harshbarger, Jayson, Hasegawa, Akira, Hori, Fumi, Ishikawa-Kato, Sachi, Ishizu, Yuri, Itoh, Masayoshi, Kawashima, Tsugumi, Kojima, Miki, Kondo, Naoto, Lizio, Marina, Meehan, Terrence F., Mungall, Christopher J., Murata, Mitsuyoshi, Nishiyori-Sueki, Hiromi, Sahin, Serkan, Nagao-Sato, Sayaka, Severin, Jessica, Kawai, Jun, Kasukawa, Takeya, Lassmann, Timo, Suzuki, Harukazu, Kawaji, Hideya, Wells, Christine, Hume, David A., Sandelin, Albin, Hayashizaki, Yoshihide

    “…Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at…”
    Get full text
    Journal Article
  18. 18

    A promoter-level mammalian expression atlas by Forrest, Alistair R R, Kawaji, Hideya, Rehli, Michael, Baillie, J Kenneth, de Hoon, Michiel J L, Haberle, Vanja, Lassmann, Timo, Kulakovskiy, Ivan V, Lizio, Marina, Itoh, Masayoshi, Andersson, Robin, Mungall, Christopher J, Meehan, Terrence F, Schmeier, Sebastian, Bertin, Nicolas, Jørgensen, Mette, Dimont, Emmanuel, Arner, Erik, Schmidl, Christian, Schaefer, Ulf, Medvedeva, Yulia A, Plessy, Charles, Vitezic, Morana, Severin, Jessica, Semple, Colin A, Ishizu, Yuri, Young, Robert S, Francescatto, Margherita, Alam, Intikhab, Albanese, Davide, Altschuler, Gabriel M, Arakawa, Takahiro, Archer, John A C, Arner, Peter, Babina, Magda, Rennie, Sarah, Balwierz, Piotr J, Beckhouse, Anthony G, Pradhan-Bhatt, Swati, Blake, Judith A, Blumenthal, Antje, Bodega, Beatrice, Bonetti, Alessandro, Briggs, James, Brombacher, Frank, Burroughs, A Maxwell, Califano, Andrea, Cannistraci, Carlo V, Carbajo, Daniel, Chen, Yun, Chierici, Marco, Ciani, Yari, Clevers, Hans C, Dalla, Emiliano, Davis, Carrie A, Detmar, Michael, Diehl, Alexander D, Dohi, Taeko, Drabløs, Finn, Edge, Albert S B, Edinger, Matthias, Ekwall, Karl, Endoh, Mitsuhiro, Enomoto, Hideki, Fagiolini, Michela, Fairbairn, Lynsey, Fang, Hai, Farach-Carson, Mary C, Faulkner, Geoffrey J, Favorov, Alexander V, Fisher, Malcolm E, Frith, Martin C, Fujita, Rie, Fukuda, Shiro, Furlanello, Cesare, Furino, Masaaki, Furusawa, Jun-ichi, Geijtenbeek, Teunis B, Gibson, Andrew P, Gingeras, Thomas, Goldowitz, Daniel, Gough, Julian, Guhl, Sven, Guler, Reto, Gustincich, Stefano, Ha, Thomas J, Hamaguchi, Masahide, Hara, Mitsuko, Harbers, Matthias, Harshbarger, Jayson, Hasegawa, Akira, Hasegawa, Yuki, Hashimoto, Takehiro, Herlyn, Meenhard, Hitchens, Kelly J, Ho Sui, Shannan J, Hofmann, Oliver M, Hoof, Ilka, Hori, Furni, Huminiecki, Lukasz

    Published in Nature (London) (27-03-2014)
    “…Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using…”
    Get full text
    Journal Article
  19. 19

    meander tail acts intrinsic to granule cell precursors to disrupt cerebellar development: analysis of meander tail chimeric mice by Hamre, K M, Goldowitz, D

    Published in Development (Cambridge) (01-11-1997)
    “…The murine mutation meander tail (gene symbol: mea) causes a near-total depletion of granule cells in the anterior lobe of the cerebellum, as well as…”
    Get full text
    Journal Article
  20. 20