High-Speed Infrared Measurement of Injector Tip Temperature during Diesel Engine Operation

Pre-catalyst engine emissions and detrimental injector deposits have been widely associated with the near-nozzle fluid dynamics during and after the injection events. Although the heating and evaporation of fuel films on the nozzle surface directly affects some of these processes, there are no exper...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 14; no. 15; p. 4584
Main Authors: Gander, Alex, Sykes, Dan, Payri, Raúl, de Sercey, Guillaume, Kennaird, Dave, Gold, Martin, Pearson, Richard J., Crua, Cyril
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-08-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pre-catalyst engine emissions and detrimental injector deposits have been widely associated with the near-nozzle fluid dynamics during and after the injection events. Although the heating and evaporation of fuel films on the nozzle surface directly affects some of these processes, there are no experimental data for the transient evolution of nozzle surface temperature during typical engine conditions. In order to address this gap in knowledge, we present a non-intrusive approach for the full-cycle time resolved measurement of the surface temperature of production nozzles in an optical engine. A mid-wave infrared high-speed camera was calibrated against controlled conditions, both out of engine and in-engine to account for non-ideal in surface emissivity and optical transmissivity. A custom-modified injector with a thermocouple embedded below the nozzle surface was used to validate the approach under running engine conditions. Calibrated infrared thermography was then applied to characterise the nozzle temperature at 1200 frames per second, during motored and fired engine operation, thus revealing for the first time the effect of transient operating conditions on the temperature of the injector nozzle’s surface.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14154584