A New Porphyry Mo Mineralization at Aisymi-Leptokarya, South-Eastern Rhodope, North-East Greece: Geological and Mineralogical Constraints
A new porphyry Mo prospect has been discovered in the Aisymi-Leptokarya area, along the southern margin of the Byala Reka–Kechros metamorphic dome, south-eastern (SE) Rhodope metallogenic zone. The study area is dominated by an Oligocene felsic dike complex, which hosts the porphyry Mo mineralizatio...
Saved in:
Published in: | Geosciences (Basel) Vol. 8; no. 12; p. 435 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-12-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new porphyry Mo prospect has been discovered in the Aisymi-Leptokarya area, along the southern margin of the Byala Reka–Kechros metamorphic dome, south-eastern (SE) Rhodope metallogenic zone. The study area is dominated by an Oligocene felsic dike complex, which hosts the porphyry Mo mineralization and intrudes into upper Eocene sandstones-marls and the Leptokarya monzodiorite pluton. The Aisymi-Leptokarya felsic dike complex displays a rhyodacitic to dacitic composition with post-collisional affinities. The porphyry Mo mineralization occurs in the form of porphyry-style quartz stockworks in the felsic dike complex associated with potassic alteration characterized by hydrothermal K-feldspar. The ore minerals consist mainly of pyrite, molybdenite, kesterite, bismuthinite and galena within both the stockwork and the rock matrix. Bulk ore analyses indicate enrichment in Mo (up to 215 ppm), Se (up to 29 ppm), Bi (up to 8 ppm) and Sn (up to 14 ppm) in the porphyry quartz veins. Late-stage, north-east (NE-) and north-west (NW-)trending milky quartz intermediate-sulfidation epithermal veins with base metals, crosscut previous vein generations and are characterized by Ag, Sn and Te anomalies. The Aisymi-Leptokarya porphyry Mo prospect is set in a back-arc geotectonic regime and shares similarities to other post-subduction porphyry molybdenum deposits elsewhere. |
---|---|
ISSN: | 2076-3263 2076-3263 |
DOI: | 10.3390/geosciences8120435 |