PROFUGO study protocol: Predictive model for the early diagnosis of anastomotic leak after esophagectomy and gastrectomy

[Display omitted] In esophagogastric surgery, the appearance of an anastomotic leak is the most feared complication. Early diagnosis is important for optimal management and successful resolution. For this reason, different studies have investigated the value of the use of markers to predict possible...

Full description

Saved in:
Bibliographic Details
Published in:Cirugia española (English ed.) Vol. 102; no. 11; pp. 624 - 629
Main Authors: Pérez Quintero, Rocío, Bruna Esteban, Marcos, Serrano López, Antonio José, Torrado, Cristina Alegre, Morote, Silvia Carbonell, Lara, Carlos Díaz, Cabrera, Jennifer Triguero, Savall’s, Elisenda Garsot, Díaz, Jean Carlos Trujillo, Mozos, Fernando Lopez, López, Rocío González, Riveiro, Monica Rey, Villahoz, Elizabeth Redondo, Álvarez, Laura Jimenez, Irañeta, Marta de Vega, Fabregat, Adrian Herrero, Fernández, Claudia Mulas, Acosta Mérida, María Asunción, Elvira, Elena Fernández, Lavilla, María del Campo, Manchado, Felipe Parreño, Moya, Cristina Sancho, Carrillo, Rodolfo Rodriguez, Bataller, Amparo Roig, Navarro, Erick Montilla, Nebreda, María García, Mirón, Teresa Carrascosa, Pardo, Rafael López, Bernal Moreno, Diego Antonio, Rosés, Helena Salvador, Trujillo, Ander Bengoechea, Abad, Irene Álvarez, Lerma, Maria Tudela, Romero, Luis Munuera, Boza, Ana Senent, Barrio, Sandra del, Romera Martínez, Jose Luis, Gómez, Loles Periañez, Campos, Cristina Marín, Rojo, Sergio Rodríguez, Larrañaga, Carla Bettonica, Pose, Sol Bagnaschino, Cabañas, Gabriel Salcedo, González, Ramón Castañera, Martín, Vanessa Concepción, Bianchi, Alessandro, García, Dulce Momblán
Format: Journal Article
Language:English
Published: Spain Elsevier España, S.L.U 01-11-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] In esophagogastric surgery, the appearance of an anastomotic leak is the most feared complication. Early diagnosis is important for optimal management and successful resolution. For this reason, different studies have investigated the value of the use of markers to predict possible postoperative complications. Because of this, research and the creation of predictive models that identify patients at high risk of developing complications are mandatory in order to obtain an early diagnosis. The PROFUGO study (PRedictivO Model for Early Diagnosis of anastomotic LEAK after esophagectomy and gastrectomy) is proposed as a prospective and multicenter national study that aims to develop, with the help of artificial intelligence methods, a predictive model that allows for the identification of high-risk cases. of anastomotic leakage and/or major complications by analyzing different clinical and analytical variables collected during the postoperative period of patients undergoing esophagectomy or gastrectomy. En cirugía esofagogástrica, la aparición de una fuga de la anastomosis es la complicación más temida. Realizar un diagnóstico temprano es importante para un manejo óptimo y resolución exitosa. Por ello, diferentes estudios han investigado el valor del uso de marcadores para predecir posibles complicaciones postoperatorias. Debido a esto, se hace mandatoria la investigación y creación de modelos predictivos que identifiquen pacientes con riesgo elevado de padecer complicaciones con el fin de obtener un diagnóstico precoz. El estudio PROFUGO (Modelo PRedictivO para el Diagnóstico Precoz de la FUGa anastomótica tras esofaguectomía y gastrectomía) se plantea como un estudio prospectivo y multicéntrico nacional que pretende elaborar, con ayuda de métodos de inteligencia artificial, un modelo predictivo que permita identificar casos con elevado riesgo de fuga anastomótica y/o complicaciones mayores mediante el análisis de diferentes variables clínicas y analíticas recogidas durante el postoperatorio de pacientes sometidos a esofaguectomía o gastrectomía.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ISSN:2173-5077
2173-5077
DOI:10.1016/j.cireng.2024.06.012