Quantitative phase imaging for characterization of single cell growth dynamics
Quantitative phase imaging (QPI) has emerged as an indispensable tool in the field of biomedicine, offering the ability to obtain quantitative maps of phase changes due to optical path length delays without the need for contrast agents. These maps provide valuable information about cellular morpholo...
Saved in:
Published in: | Lasers in medical science Vol. 38; no. 1; p. 241 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Springer London
18-10-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantitative phase imaging (QPI) has emerged as an indispensable tool in the field of biomedicine, offering the ability to obtain quantitative maps of phase changes due to optical path length delays without the need for contrast agents. These maps provide valuable information about cellular morphology and dynamics, unperturbed by the introduction of exogenous substances. In this review, a summary of recent studies that have focused on elucidating the growth dynamics of individual cells using QPI is presented. Specifically, investigations into cellular changes occurring during mitosis, the differentiation of cellular organelles, the assessment of distinct cell death processes (i.e., apoptosis, necrosis, and oncosis) and the precise measurement of live cell temperature are explored. Furthermore, the captivating applications of QPI in theragnostics, where its potential for transformative impact is prominently showcased, are highlighted. Finally, the challenges that need to be overcome for its wider adoption and successful integration into biomedical research are outlined.
Graphical abstract |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1435-604X 0268-8921 1435-604X |
DOI: | 10.1007/s10103-023-03902-2 |