Towards Miniaturization of a MEMS-Based Wearable Motion Capture System

This paper presents a modular architecture to develop a wearable system for real-time human motion capture. The system is based on a network of smart inertial measurement units (IMUs) distributed on the human body. Each of these modules is provided with a 32-bit RISC microcontroller (MCU) and miniat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 58; no. 8; pp. 3234 - 3241
Main Authors: Brigante, C. M. N., Abbate, N., Basile, A., Faulisi, A. C., Sessa, S.
Format: Journal Article
Language:English
Published: New York IEEE 01-08-2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a modular architecture to develop a wearable system for real-time human motion capture. The system is based on a network of smart inertial measurement units (IMUs) distributed on the human body. Each of these modules is provided with a 32-bit RISC microcontroller (MCU) and miniaturized MEMS sensors: three-axis accelerometer, three-axis gyroscopes, and three-axis magnetometer. The MCU collects measurements from the sensors and implement the sensor fusion algorithm, a quaternion-based extended Kalman filter to estimate the attitude and the gyroscope biases. The design of the proposed IMU, in order to overcome the problems of the commercial solution, aims to improve performance and to reduce size and weight. In this way, it can be easily embedded in a tracksuit for total body motion reconstruction with considerable enhancement of the wearability and comfort. Furthermore, the main achievements will be presented with a performance comparison between the proposed IMU and some commercial platforms.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2011.2148671