Magnetic fields reveal signatures of triplet-pair multi-exciton photoluminescence in singlet fission
The photophysical processes of singlet fission and triplet fusion have numerous emerging applications. They involve the separation of a photo-generated singlet exciton into two dark triplet excitons and the fusion of two dark triplet excitons into an emissive singlet exciton, respectively. The role...
Saved in:
Published in: | Nature chemistry Vol. 16; no. 11; pp. 1861 - 1867 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-11-2024
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The photophysical processes of singlet fission and triplet fusion have numerous emerging applications. They involve the separation of a photo-generated singlet exciton into two dark triplet excitons and the fusion of two dark triplet excitons into an emissive singlet exciton, respectively. The role of the excimer state and the nature of the triplet-pair state in these processes have been a matter of contention. Here we analyse the room temperature time-resolved emission of a neat liquid singlet fission chromophore and show that it exhibits three spectral components: two that correspond to the bright singlet and excimer states and a third component that becomes more prominent during triplet fusion. This spectrum is enhanced by magnetic fields, confirming its origins in the recombination of weakly coupled triplet pairs. It is thus attributed to a strongly coupled triplet pair state. These observations unite the view that there is an emissive intermediate in singlet fission and triplet fusion, distinct from the broad, unstructured excimer emission.
Singlet fission produces two molecular excitations from one photon and has the potential to boost solar cell efficiencies. Now it has been shown that magnetic fields can reveal the spectral signatures of the multi-excitonic intermediates in this process. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1755-4330 1755-4349 1755-4349 |
DOI: | 10.1038/s41557-024-01591-0 |