Analysis of a neutron-induced conversion electron spectrum of gadolinium

A 100-nm-thick gadolinium layer deposited on a pixelated silicon sensor was activated in a neutron field to measure the internal conversion electron (ICE) spectrum generated by neutron capture products of 155Gd and 157Gd. The experiment was performed at the ISIS neutron and muon facility, using a be...

Full description

Saved in:
Bibliographic Details
Published in:Applied radiation and isotopes Vol. 197; p. 110828
Main Authors: Pommé, S., Veale, M.C., Pooley, D.E., Van Assche, F., Falksohn, F., Collins, S.M.
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 100-nm-thick gadolinium layer deposited on a pixelated silicon sensor was activated in a neutron field to measure the internal conversion electron (ICE) spectrum generated by neutron capture products of 155Gd and 157Gd. The experiment was performed at the ISIS neutron and muon facility, using a bespoke version of the HEXITEC spectroscopic imaging camera. Signals originating from internal conversion electrons, Auger electrons, x rays and gamma rays up to 150 keV were identified. The ICE spectrum has an energy resolution of 1.8–1.9 keV at 72 keV and shows peaks from the K, L, M, N+ ICEs of the 79.51 keV and 88.967 keV 2+-0+ gamma transitions from the first excited states in 158Gd and 156Gd, respectively, as well as the K ICEs of the 4+-2+ transitions at 181.931 keV and 199.213 keV from the respective second excited states. Spectrum analysis was performed using a convolution of a Gaussian with exponential functions at the low and high energy side as the peak shaping function. Relative ICE intensities were derived from the fitted peak areas and compared with internal conversion coefficient (ICC) values calculated from the BrIcc database. Relative to the dominant L shell contribution, the K ICE intensity conforms to BrIcc and the M, N, O+ ICE intensities are somewhat higher than expected. •Measured conversion electrons following neutron capture in gadolinium.•Used pixelated silicon detector with 100-nm-thick Gd in pulsed neutron field.•The obtained energy resolution of 1.8–1.9 keV is currently the best available.•Determined relative ICE intensities from the K, L, M, N, O+ shells.•Results differ mildly from calculations from the BrIcc database.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0969-8043
1872-9800
DOI:10.1016/j.apradiso.2023.110828