Empirical models for estimating global solar radiation: A review and case study

Solar radiation is a primary driver for many physical, chemical, and biological processes on the earth’s surface. Solar energy engineers, architects, agriculturists, hydrologists, etc. often require a reasonably accurate knowledge of the availability of the solar resource for their relevant applicat...

Full description

Saved in:
Bibliographic Details
Published in:Renewable & sustainable energy reviews Vol. 21; pp. 798 - 821
Main Authors: Besharat, Fariba, Dehghan, Ali A., Faghih, Ahmad R.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-05-2013
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solar radiation is a primary driver for many physical, chemical, and biological processes on the earth’s surface. Solar energy engineers, architects, agriculturists, hydrologists, etc. often require a reasonably accurate knowledge of the availability of the solar resource for their relevant applications at their local. In solar applications, one of the most important parameters needed is the long-term average daily global irradiation. For regions where no actual measured values are available, a common practice is to estimate average daily global solar radiation using appropriate empirical correlations based on the measured relevant data at those locations. These correlations estimate the values of global solar radiation for a region of interest from more readily available meteorological, climatological, and geographical parameters. The main objective of this study is to chronologically collect and review the extensive global solar radiation models available in the literature and to classify them into four categories, i.e., sunshine-based, cloud-based, temperature-based, and other meteorological parameter-based models, based on the employed meteorological parameters as model input. Furthermore, in order to evaluate the accuracy and applicability of the models reported in this paper for computing the monthly average daily global solar radiation on a horizontal surface, the geographical and meteorological data of Yazd city, Iran was used. The developed models were then evaluated and compared on the basis of statistical error indices and the most accurate model was chosen in each category. Results revealed that all the proposed correlations have a good estimation of the monthly average daily global solar radiation on a horizontal surface in Yazd city, however, the El-Metwally sunshine-based model predicts the monthly averaged global solar radiation with a higher accuracy.
Bibliography:http://dx.doi.org/10.1016/j.rser.2012.12.043
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1364-0321
1879-0690
DOI:10.1016/j.rser.2012.12.043