Purification and Characterization of an Esterase Involved in Poly(vinyl alcohol) Degradation by Pseudomonas vesicularis PD
An esterase catalyzing the hydrolysis of acetyl ester moieties in poly(vinyl alcohol) was purified 400-fold to electrophoretic homogeneity from the cytoplasmic fraction of Pseudomonas vesicularis PD, which was capable of assimilating poly(vinyl alcohol) as the sole carbon and energy source. The puri...
Saved in:
Published in: | Bioscience, biotechnology, and biochemistry Vol. 62; no. 10; pp. 2000 - 2007 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Tokyo
Japan Society for Bioscience, Biotechnology, and Agrochemistry
01-10-1998
Japan Society for Bioscience Biotechnology and Agrochemistry Oxford University Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An esterase catalyzing the hydrolysis of acetyl ester moieties in poly(vinyl alcohol) was purified 400-fold to electrophoretic homogeneity from the cytoplasmic fraction of Pseudomonas vesicularis PD, which was capable of assimilating poly(vinyl alcohol) as the sole carbon and energy source. The purified enzyme was a homodimeric protein with a molecular mass of 80 kDa and the isoelectric point was 6.8. The pH and temperature optima of the enzyme were 8.0 and 45°C. The enzyme catalyzed the hydrolysis of side chains of poly(vinyl alcohol), short-chain p-nitrophenyl esters, 2-naphthyl acetate, and phenyl acetate, and was slightly active toward aliphatic esters. The enzyme was also active toward the enzymatic degradation products, acetoxy hydroxy fatty acids, of poly(vinyl alcohol). The K
m
and V
max
of poly(vinyl alcohol) (degree of polymerization, 500; saponification degree, 86.5-89.0 mol%) and p-nitrophenyl acetate were 0.381% (10.6 mM as acetyl content in the polymer) and 2.56 μM, and 6.52 and 12.6 μmol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate at a concentration of 5 mM, which indicated that the enzyme was a serine esterase. The pathway for the metabolism of poly(vinyl alcohol) is also discussed. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0916-8451 1347-6947 |
DOI: | 10.1271/bbb.62.2000 |