Utilizing the fecal microbiota to understand foal gut transitions from birth to weaning

A healthy gastrointestinal (GI) tract with a properly established microbiota is necessary for a foal to develop into a healthy weanling. A foal's health can be critically impacted by aberrations in the microbiome such as with diarrhea which can cause great morbidity and mortality in foals. In t...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 14; no. 4; p. e0216211
Main Authors: De La Torre, Ubaldo, Henderson, John D, Furtado, Kathleen L, Pedroja, Madeleine, Elenamarie, O'Malley, Mora, Anthony, Pechanec, Monica Y, Maga, Elizabeth A, Mienaltowski, Michael J
Format: Journal Article
Language:English
Published: United States Public Library of Science 30-04-2019
Public Library of Science (PLoS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A healthy gastrointestinal (GI) tract with a properly established microbiota is necessary for a foal to develop into a healthy weanling. A foal's health can be critically impacted by aberrations in the microbiome such as with diarrhea which can cause great morbidity and mortality in foals. In this study, we hypothesized that gut establishment in the foal transitioning from a diet of milk to a diet of grain, forage, and pasture would be detectable through analyses of the fecal microbiotas. Fecal samples from 37 sets of foals and mares were collected at multiple time points ranging from birth to weaning. Bacterial DNA was isolated from the samples, and the V4 domain of bacterial 16S rRNA genes were amplified via polymerase chain reaction. Next generation sequencing was then performed on the resulting amplicons, and analyses were performed to characterize the microbiome as well as the relative abundance of microbiota present. We found that bacterial population compositions followed a pattern throughout the early life of the foal in an age-dependent manner. As foals transitioned from milk consumption to a forage and grain diet, there were recognizable changes in fecal microbial compositions from initial populations predominant in the ability to metabolize milk to populations capable of utilizing fibrous plant material. We were also able to recognize differences in microbial populations amongst diarrheic foals as well as microbial population differences associated with differences in management styles between facilities. Future efforts will gauge the effects of lesser abundant bacterial populations that could also be essential to GI health, as well as to determine how associations between microbial population profiles and animal management practices can be used to inform strategies for improving upon the health and growth of horses overall.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0216211