Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing Clostridioides difficile
Certain existing prebiotics meant to facilitate the growth of beneficial bacteria in the intestine also promote the growth of other prominent bacteria. Therefore, the growth-promoting effects of β-galactosides on intestinal bacteria were analyzed. Galactosyl-β1,4-l-rhamnose (Gal-β1,4-Rha) selectivel...
Saved in:
Published in: | Gut microbes Vol. 13; no. 1; p. 1973835 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Taylor & Francis
01-01-2021
Taylor & Francis Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Certain existing prebiotics meant to facilitate the growth of beneficial bacteria in the intestine also promote the growth of other prominent bacteria. Therefore, the growth-promoting effects of β-galactosides on intestinal bacteria were analyzed. Galactosyl-β1,4-l-rhamnose (Gal-β1,4-Rha) selectively promoted the growth of Bifidobacterium. Bifidobacterium longum subsp. longum 105-A (JCM 31944) has multiple solute-binding proteins belonging to ATP-binding cassette transporters for sugars. Each strain in the library of 11 B. longum subsp. longum mutants, in which each gene of the solute-binding protein was disrupted, was cultured in a medium containing Gal-β1,4-Rha as the sole carbon source, and only the BL105A_0502 gene-disruption mutant showed delayed and reduced growth compared to the wild-type strain. BL105A_0502 homolog is highly conserved in bifidobacteria. In a Gal-β1,4-Rha-containing medium, Bifidobacterium longum subsp. infantis JCM 1222
T
, which possesses BLIJ_2090, a homologous protein to BL105A_0502, suppressed the growth of enteric pathogen Clostridioides difficile, whereas the BLIJ_2090 gene-disrupted mutant did not. In vivo, administration of B. infantis and Gal-β1,4-Rha alleviated C. difficile infection-related weight loss in mice. We have successfully screened Gal-β1,4-Rha as a next-generation prebiotic candidate that specifically promotes the growth of beneficial bacteria without promoting the growth of prominent bacteria and pathogens. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1949-0976 1949-0984 |
DOI: | 10.1080/19490976.2021.1973835 |