Anakinra Removal by Continuous Renal Replacement Therapy: An Ex Vivo Analysis

Patients with sepsis are at significant risk for multiple organ dysfunction, including the lungs and kidneys. To manage the morbidity associated with kidney impairment, continuous renal replacement therapy (CRRT) may be required. The extent of anakinra pharmacokinetics in CRRT remains unknown. The o...

Full description

Saved in:
Bibliographic Details
Published in:Critical care explorations Vol. 5; no. 12; p. e1010
Main Authors: Dubinsky, Samuel D J, Watt, Kevin M, Imburgia, Carina E, Mcknite, Autumn M, Hunt, J Porter, Rice, Cassandra, Rower, Joseph E, Edginton, Andrea N
Format: Journal Article
Language:English
Published: United States Wolters Kluwer 01-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Patients with sepsis are at significant risk for multiple organ dysfunction, including the lungs and kidneys. To manage the morbidity associated with kidney impairment, continuous renal replacement therapy (CRRT) may be required. The extent of anakinra pharmacokinetics in CRRT remains unknown. The objectives of this study were to investigate the anakinra-circuit interaction and quantify the rate of removal from plasma. The anakinra-circuit interaction was evaluated using a closed-loop ex vivo CRRT circuit. CRRT was performed in three phases based on the method of solute removal: 1) hemofiltration, 2) hemodialysis, and 3) hemodiafiltration. Standard control samples of anakinra were included to assess drug degradation. University research laboratory. None. Anakinra was administered to the CRRT circuit and serial prefilter blood samples were collected along with time-matched control and hemofiltrate samples. Each circuit was run in triplicate to assess inter-run variability. Concentrations of anakinra in each reference fluid were measured by enzyme-linked immunosorbent assay. Transmembrane filter clearance was estimated by the product of the sieving coefficient/dialysate saturation constant and circuit flow rates. Removal of anakinra from plasma occurred within minutes for each CRRT modality. Average drug remaining (%) in plasma following anakinra administration was lowest with hemodiafiltration (34.9%). The average sieving coefficient was 0.34, 0.37, and 0.41 for hemodiafiltration, hemofiltration, and hemodialysis, respectively. Transmembrane clearance was fairly consistent across each modality with the highest during hemodialysis (5.53 mL/min), followed by hemodiafiltration (4.99 mL/min), and hemofiltration (3.94 mL/min). Percent drug remaining within the control samples (93.1%) remained consistent across each experiment, indicating negligible degradation within the blood. The results of this analysis are the first to demonstrate that large molecule therapeutic proteins such as anakinra, are removed from plasma with modern CRRT technology. Current dosing recommendations for patients with severe renal impairment may result in subtherapeutic anakinra concentrations in those receiving CRRT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2639-8028
2639-8028
DOI:10.1097/CCE.0000000000001010