Fiber Lasers Based on Dynamic Population Gratings in Rare-Earth-Doped Optical Fibers

Long dynamic population gratings (DPGs) formed in rare-earth-doped fibers have unique spectral characteristics compared to other types of fiber gratings, making them suitable for controlling the spectral composition of lasers. Depending on the type, length, and position of the DPGs in the cavities o...

Full description

Saved in:
Bibliographic Details
Published in:Photonics Vol. 9; no. 9; p. 613
Main Authors: Poddubrovskii, Nikita R., Drobyshev, Roman V., Lobach, Ivan A., Kablukov, Sergey I.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long dynamic population gratings (DPGs) formed in rare-earth-doped fibers have unique spectral characteristics compared to other types of fiber gratings, making them suitable for controlling the spectral composition of lasers. Depending on the type, length, and position of the DPGs in the cavities of lasers, they can be used for various purposes, ranging from the stabilization of single-frequency radiation to regular wavelength self-sweeping (WLSS) operation. Lasers based on DPGs are sources of narrow-band radiation with a fixed or sweeping generation spectrum. One of the main advantages of such lasers is the simplicity of their design, since they do not require special spectral elements or drivers for spectrum control. In this paper, we review the research progress on fiber lasers based on DPGs. The basic working principles of different types of DPGs will be introduced in the theoretical section. The operation of lasers based on absorption and gain DPGs and their practical applications will be discussed and summarized in experimental section. Finally, the main challenges for the development of such lasers will be presented.
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics9090613