Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres
Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 42; pp. 16450 - 16455 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
16-10-2007
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y (NF-Y) family, AtNF-YB1, which acts through a previously undescribed mechanism to confer improved performance in Arabidopsis under drought conditions. An orthologous maize transcription factor, ZmNF-YB2, is shown to have an equivalent activity. Under water-limited conditions, transgenic maize plants with increased ZmNF-YB2 expression show tolerance to drought based on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting, and maintenance of photosynthesis. These stress adaptations contribute to a grain yield advantage to maize under water-limited environments. The application of this technology has the potential to significantly impact maize production systems that experience drought. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: D.E.N., P.P.R., T.R.A., R.A.C., J.W., D.C.W., D.C.A., R.J.B., P.P.C., R.W.K., D.R.M., S.B.D., N.G., O.J.R., and J.E.H. designed research; D.E.N., P.P.R., T.R.A., R.A.C., J.W., D.C.W., D.C.A., R.J.B., P.P.C., M.G.D., B.S.H., R.W.K., and K.A.K. performed research; D.E.N., P.P.R., T.R.A., R.A.C., J.W., D.C.W., D.C.A., R.W.K., D.R.M., and R.D.C. analyzed data; and D.E.N., P.P.R., N.G., and O.J.R. wrote the paper. Communicated by Maarten J. Chrispeels, University of California at San Diego, La Jolla, CA, August 29, 2007 Present address: Monsanto Company, 62 Maritime Drive, Mystic, CT 06355. |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0707193104 |