Itaconic Acid as a Comonomer in Betulin-Based Thermosets via Sequential and Bulk Preparation
The inherent chemical functionalities of biobased monomers enable the production of renewably sourced polymers that further advance sustainable manufacturing. Itaconic acid (IA) is a nontoxic, commercially produced biobased monomer that can undergo both UV and thermal curing. Betulin is a biocompati...
Saved in:
Published in: | ACS sustainable chemistry & engineering Vol. 11; no. 38; pp. 14216 - 14225 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
25-09-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The inherent chemical functionalities of biobased monomers enable the production of renewably sourced polymers that further advance sustainable manufacturing. Itaconic acid (IA) is a nontoxic, commercially produced biobased monomer that can undergo both UV and thermal curing. Betulin is a biocompatible, structurally complex diol derived from birch tree bark that has been recently studied for materials with diverse applications. Here, betulin, IA, and biobased linear diacids, 1,12-dodecanedioic acid (C12) and 1,18-octadecanedioic acid (C18), were used to prepare thermosets using sequential and bulk curing methods. Thermoplastic polyester precursors were synthesized and formulated into polyester-methacrylate (PM) resins to produce sequential UV-curable thermosets. Bulk-cured polyester thermosets were prepared using a one-pot, solventless melt polycondensation using glycerol as a cross-linker. The structure–property relationships of the thermoplastic polyester precursors, sequentially prepared PM thermosets, and bulk-cured polyester thermosets were evaluated with varying IA content. Both types of thermosets exhibited higher storage moduli, T gs, and thermal stabilities with greater IA comonomer content. These results demonstrate the viability of using IA as a comonomer to produce betulin-based thermosets each with tunable properties, expanding the scope of their applications and use in polymeric materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.3c04178 |