Identifying the seeding signature in cloud particles from hydrometeor residuals
Cloud seeding experiments for modifying clouds and precipitation have been underway for nearly a century; yet practically all the attempts to link precipitation enhancement or suppression to the presence of seeding materials within clouds remain elusive. In 2019, the Cloud–Aerosol Interaction and Pr...
Saved in:
Published in: | Atmospheric measurement techniques Vol. 17; no. 8; pp. 2387 - 2400 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Katlenburg-Lindau
Copernicus GmbH
19-04-2024
Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cloud seeding experiments for modifying clouds and precipitation have been underway for nearly a century; yet practically all the attempts to link precipitation enhancement or suppression to the presence of seeding materials within clouds remain elusive. In 2019, the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) investigated residuals of cloud hydrometeors in seeded and non-seeded clouds with an airborne mini aerosol mass spectrometer (mAMS). The mAMS was utilized in conjunction with a counterflow virtual impactor (CVI) inlet with a cutoff diameter size of approximately 7 µm. The evaporated cloud droplets from the CVI inlet as cloud residuals were evaluated through the mAMS. The chlorine (Cl) associated with hygroscopic materials, i.e. calcium chloride (CaCl2) and potassium (K), which serve as the oxidizing agents in the flares, is found in relatively higher concentrations in the seeded clouds compared to the non-seeded clouds. In convective clouds, Cl and K as cloud residuals were found even at a vertical distance of 2.25 km from the cloud base. Major findings from the seeding impact are an increase in the number concentration of small (< 20 µm) droplets and an indication of raindrop formation at 2.25 km above the cloud base. It is demonstrated that the seed particle signature can be traced inside clouds along with the microphysical impacts. |
---|---|
ISSN: | 1867-8548 1867-1381 1867-8548 |
DOI: | 10.5194/amt-17-2387-2024 |