Mild Hybridization of Turboprop Engine With High-Power-Density Integrated Electric Drives
This article shares with the aerospace community a case study of turboprop mild hybridization using a recently developed integrated drive system in the University of Nottingham, U.K., within the ACHIEVE project under EU H2020 CleanSky 2 program (project No. 737814). The developed drive system enable...
Saved in:
Published in: | IEEE transactions on transportation electrification Vol. 8; no. 4; pp. 4148 - 4162 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-12-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article shares with the aerospace community a case study of turboprop mild hybridization using a recently developed integrated drive system in the University of Nottingham, U.K., within the ACHIEVE project under EU H2020 CleanSky 2 program (project No. 737814). The developed drive system enables the green taxiing of a turboprop aircraft while on the ground with its engine OFF and as an electrical generator when the turboprop is in the air. The entire system is designed to be able to integrate within the power auxiliary gearbox (PAGB) of a turboprop aircraft. Some of the key features of the developed system include a high-speed permanent magnet machine (up to 14200 rpm) with a dual-three-phase design, silicon carbide (SiC)-based high power density (11.8 kW/L for the power converter, and 35.3 kW/L and 7.2 kW/kg for the machine active parts), integrated cooling design for high-temperature operation (<inline-formula> <tex-math notation="LaTeX">>130~^{\circ }\text{C} </tex-math></inline-formula> ambient temperature), fault tolerance consideration with dual-channel operation capabilities, and sensorless control for entire operational conditions. This article is giving an overview of the design process of the electrical machine, power converters, and the cooling of the entire drive. The numerical analysis [finite element method (FEM) and computational fluid dynamics (CFD)] and some experimental results are presented to demonstrate the effectiveness and the desired performance of the developed integrated drive system. |
---|---|
ISSN: | 2332-7782 2577-4212 2332-7782 |
DOI: | 10.1109/TTE.2022.3160153 |