Evidence for the involvement of d-aspartic acid in learning and memory of rat
d-Aspartic acid (d-Asp) is an endogenous amino acid present in neuroendocrine systems. Here, we report evidence that d-Asp in the rat is involved in learning and memory processes. Oral administration of sodium d-aspartate (40 mM) for 12-16 days improved the rats' cognitive capability to find a...
Saved in:
Published in: | Amino acids Vol. 38; no. 5; pp. 1561 - 1569 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Vienna
Vienna : Springer Vienna
01-05-2010
Springer Vienna Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | d-Aspartic acid (d-Asp) is an endogenous amino acid present in neuroendocrine systems. Here, we report evidence that d-Asp in the rat is involved in learning and memory processes. Oral administration of sodium d-aspartate (40 mM) for 12-16 days improved the rats' cognitive capability to find a hidden platform in the Morris water maze system. Two sessions per day for three consecutive days were performed in two groups of 12 rats. One group was treated with Na-d-aspartate and the other with control. A significant increase in the cognitive effect was observed in the treated group compared to controls (two-way ANOVA with repeated measurements: F ₍₂, ₁₀₅₎ = 57.29; P value < 0.001). Five further sessions of repeated training, involving a change in platform location, also displayed a significant treatment effect [F ₍₂, ₈₄₎ = 27.62; P value < 0.001]. In the hippocampus of treated rats, d-Asp increased by about 2.7-fold compared to controls (82.5 ± 10.0 vs. the 30.6 ± 5.4 ng/g tissue; P < 0.0001). Moreover, 20 randomly selected rats possessing relatively high endogenous concentrations of d-Asp in the hippocampus were much faster in reaching the hidden platform, an event suggesting that their enhanced cognitive capability was functionally related to the high levels of d-Asp. The correlation coefficient calculated in the 20 rats was R = −0.916 with a df of 18; P < 0.001. In conclusion, this study provides corroborating evidence that d-aspartic acid plays an important role in the modulation of learning and memory. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s00726-009-0369-x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0939-4451 1438-2199 |
DOI: | 10.1007/s00726-009-0369-x |