Estimation of cancer risks due to chest radiotherapy treatment planning computed tomography (CT) simulations

The objective of our study was to determine organ doses to estimate the lifetime attributable risk (LAR) of cancer incidence related to chest tomography simulations for Radiotherapy Treatment Planning (RTTP) using patient-specific information. Patient data were used to calculate organ doses and effe...

Full description

Saved in:
Bibliographic Details
Published in:Radiation and environmental biophysics Vol. 62; no. 2; pp. 269 - 277
Main Authors: Derikvand, Afsaneh Mir, Bagherzadeh, Saeed, MohammadSharifi, Ali, Khoshgard, Karim, AllahMoradi, Fariba
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-05-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of our study was to determine organ doses to estimate the lifetime attributable risk (LAR) of cancer incidence related to chest tomography simulations for Radiotherapy Treatment Planning (RTTP) using patient-specific information. Patient data were used to calculate organ doses and effective dose. The effective dose (E) was calculated by two methods. First, to calculate effective dose in a standard phantom, the collected dosimetric parameters were used with the ImPACT CT Patient Dosimetry Calculator and E was calculated by applying related correction factors. Second, using the scanner-derived Dose Length Product, LARs were computed using the US National Academy of Sciences (BEIR VII) model for age- and sex-specific risks at each exposure. DLP, CTDI vol , and scan length were 507 ± 143 mGy.cm, 11 ± 4 mGy, and 47 ± 7 cm, respectively. The effective dose was 10 ± 3 mSv using ImPACT patient dosimetry calculator software and 9 ± 2 mSv using the scanner-derived Dose Length Product. The LAR of cancer incidence for all cancers, all solid cancers and leukemia were 65 ± 29, 62 ± 27, 7 ± 2 cases per 100,000 individuals, respectively. Radiation exposure from the usage of CT for radiotherapy treatment planning (RTTP) causes non-negligible increases in lifetime attributable risk. The results of this study can be used as a guide by physicians to implement strategies based on the As Low As Reasonably Achievable (ALARA) principle that lead to a reduction dose without sacrificing diagnostic information.
ISSN:0301-634X
1432-2099
DOI:10.1007/s00411-023-01025-4