Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia
The semi-volatile nature of carbonaceous aerosols complicates their collection, and for this reason special air sampling configurations must be utilized. ACE-Asia provided a unique opportunity to compare different sampling techniques for collecting carbonaceous aerosols. In this paper detailed compa...
Saved in:
Published in: | Atmospheric environment (1994) Vol. 37; no. 11; pp. 1435 - 1449 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-04-2003
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The semi-volatile nature of carbonaceous aerosols complicates their collection, and for this reason special air sampling configurations must be utilized. ACE-Asia provided a unique opportunity to compare different sampling techniques for collecting carbonaceous aerosols. In this paper detailed comparisons between filter-based carbonaceous aerosol sampling methods are made. The majority of organic carbon (OC) present on a backup quartz fiber filter (QFF) in an undenuded-filter sampler resulted from the adsorption of native gaseous OC rather than OC evaporated from collected particles. The level of OC on a backup QFF placed behind a QFF was lower than the level present on a backup QFF placed behind a Teflon membrane filter (TMF) indicating that gas/filter equilibrium may not be achieved in some QFF front and backup filter pairs. Gas adsorption artifacts can result in a 20–100% overestimation of the ambient particle-phase OC concentration. The gas collection efficiency of XAD-coated and carbon-impregnated filter-lined denuders were not always 100%, but, nonetheless, such denuders minimize gas adsorption artifacts. The median fraction of particle-phase OC that is estimated to evaporate from particles collected by denuder-filter samplers ranged from 0 to 0.2; this value depends on the sampler configuration, chemical composition of the OC, and sampling conditions. After properly correcting for sampling artifacts, the measured OC concentration may differ by 10% between undenuded- and denuder-filter samplers. Uncorrected, such differences can be as large as a factor two, illustrating the importance of sampling configurations in which gas adsorption or evaporation artifacts are reduced or can be corrected. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1352-2310 1873-2844 |
DOI: | 10.1016/S1352-2310(02)01061-0 |